Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Apache Spark 2.x

You're reading from   Mastering Apache Spark 2.x Advanced techniques in complex Big Data processing, streaming analytics and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786462749
Length 354 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Romeo Kienzler Romeo Kienzler
Author Profile Icon Romeo Kienzler
Romeo Kienzler
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A First Taste and What’s New in Apache Spark V2 FREE CHAPTER 2. Apache Spark SQL 3. The Catalyst Optimizer 4. Project Tungsten 5. Apache Spark Streaming 6. Structured Streaming 7. Apache Spark MLlib 8. Apache SparkML 9. Apache SystemML 10. Deep Learning on Apache Spark with DeepLearning4j and H2O 11. Apache Spark GraphX 12. Apache Spark GraphFrames 13. Apache Spark with Jupyter Notebooks on IBM DataScience Experience 14. Apache Spark on Kubernetes

What's new in Apache Spark V2?

Since Apache Spark V2, many things have changed. This doesn't mean that the API has been broken. In contrast, most of the V1.6 Apache Spark applications will run on Apache Spark V2 with or without very little changes, but under the hood, there have been a lot of changes.

The first and most interesting thing to mention is the newest functionalities of the Catalyst Optimizer, which we will cover in detail in Chapter 3, The Catalyst Optimizer. Catalyst creates a Logical Execution Plan (LEP) from a SQL query and optimizes this LEP to create multiple Physical Execution Plans (PEPs). Based on statistics, Catalyst chooses the best PEP to execute. This is very similar to cost-based optimizers in Relational Data Base Management Systems (RDBMs). Catalyst makes heavy use of Project Tungsten, a component that we will cover in Chapter 4, Apache Spark Streaming.

Although the Java Virtual Machine (JVM) is a masterpiece on its own, it is a general-purpose byte code execution engine. Therefore, there is a lot of JVM object management and garbage collection (GC) overhead. So, for example, to store a 4-byte string, 48 bytes on the JVM are needed. The GC optimizes on object lifetime estimation, but Apache Spark often knows this better than JVM. Therefore, Tungsten disables the JVM GC for a subset of privately managed data structures to make them L1/L2/L3 Cache-friendly.

In addition, code generation removed the boxing of primitive types polymorphic function dispatching. Finally, a new first-class citizen called Dataset unified the RDD and DataFrame APIs. Datasets are statically typed and avoid runtime type errors. Therefore, Datasets can be used only with Java and Scala. This means that Python and R users still have to stick to DataFrames, which are kept in Apache Spark V2 for backward compatibility reasons.

You have been reading a chapter from
Mastering Apache Spark 2.x - Second Edition
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781786462749
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image