Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Solutions

You're reading from   Machine Learning Solutions Expert techniques to tackle complex machine learning problems using Python

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788390040
Length 566 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jalaj Thanaki Jalaj Thanaki
Author Profile Icon Jalaj Thanaki
Jalaj Thanaki
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Machine Learning Solutions
Foreword
Contributors
Preface
1. Credit Risk Modeling FREE CHAPTER 2. Stock Market Price Prediction 3. Customer Analytics 4. Recommendation Systems for E-Commerce 5. Sentiment Analysis 6. Job Recommendation Engine 7. Text Summarization 8. Developing Chatbots 9. Building a Real-Time Object Recognition App 10. Face Recognition and Face Emotion Recognition 11. Building Gaming Bot List of Cheat Sheets Strategy for Wining Hackathons Index

Implementing the rule-based chatbot


In this section, we will understand the implementation of the chatbot. This implementation is divided into two parts. You can find this code by visiting: https://github.com/jalajthanaki/Chatbot_Rule_Based:

  • Implementing the conversation flow

  • Implementing RESTful APIs using flask

Implementing the conversation flow

In order to implement the conversation logic, we are writing a separate Python script, so that whenever we need to add or delete some logic it will be easy for us. Here, we create one Python package in which we put this conversation logic. The name of the file is conversationengine.py and it uses JSON, BSON, and re as Python dependencies.

In this file, we have implemented each conversation in the form of a function. When the user opens the chatbot for the first time, a welcome message should pop up. You can refer to the code given in the following screenshot:

Figure 8.9: Code snippet for the welcome message

Now the users need to type in Hi in order to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image