Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for OpenCV

You're reading from   Machine Learning for OpenCV Intelligent image processing with Python

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781783980284
Length 382 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Michael Beyeler Michael Beyeler
Author Profile Icon Michael Beyeler
Michael Beyeler
Michael Beyeler (USD) Michael Beyeler (USD)
Author Profile Icon Michael Beyeler (USD)
Michael Beyeler (USD)
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. A Taste of Machine Learning 2. Working with Data in OpenCV and Python FREE CHAPTER 3. First Steps in Supervised Learning 4. Representing Data and Engineering Features 5. Using Decision Trees to Make a Medical Diagnosis 6. Detecting Pedestrians with Support Vector Machines 7. Implementing a Spam Filter with Bayesian Learning 8. Discovering Hidden Structures with Unsupervised Learning 9. Using Deep Learning to Classify Handwritten Digits 10. Combining Different Algorithms into an Ensemble 11. Selecting the Right Model with Hyperparameter Tuning 12. Wrapping Up

Assessing the significance of our results

Assume for a moment that we implemented the cross-validation procedure for two versions of our k-NN classifier. The resulting test scores are-- 92.34% for Model A, and 92.73% for Model B. How do we know which model is better?

Following our logic introduced here, we might argue for Model B because it has a better test score. But what if the two models are not significantly different? These could have two underlying causes, which are both a consequence of the randomness of our testing procedure:

  • For all we know, Model B just got lucky. Perhaps we chose a really low k for our cross-validation procedure. Perhaps Model B ended up with a beneficial train-test split so that the model had no problem classifying the data. After all, we didn't run tens of thousands of iterations like in bootstrapping to make sure the result holds in general...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime