Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Developers

You're reading from   Machine Learning for Developers Uplift your regular applications with the power of statistics, analytics, and machine learning

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781786469878
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Md Mahmudul Hasan Md Mahmudul Hasan
Author Profile Icon Md Mahmudul Hasan
Md Mahmudul Hasan
Rodolfo Bonnin Rodolfo Bonnin
Author Profile Icon Rodolfo Bonnin
Rodolfo Bonnin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction - Machine Learning and Statistical Science FREE CHAPTER 2. The Learning Process 3. Clustering 4. Linear and Logistic Regression 5. Neural Networks 6. Convolutional Neural Networks 7. Recurrent Neural Networks 8. Recent Models and Developments 9. Software Installation and Configuration

Loss function definition

This machine learning process step is also very important because it provides a distinctive measure of the quality of your model, and if wrongly chosen, it could either ruin the accuracy of the model or its efficiency in the speed of convergence.

Expressed in a simple way, the loss function is a function that measures the distance from the model's estimated value to the real expected value.

An important fact that we have to take into account is that the objective of almost all of the models is to minimize the error function, and for this, we need it to be differentiable, and the derivative of the error function should be as simple as possible.

Another fact is that when the model gets increasingly complex, the derivative of the error will also get more complex, so we will need to approximate solutions for the derivatives with iterative methods...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime