Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Introduction - classic and adaptive machines

Since time immemorial, human beings have built tools and machines to simplify their work and reduce the overall effort needed to complete many different tasks. Even without knowing any physical law, they invented levers (formally described for the first time by Archimedes), instruments, and more complex machines to carry out longer and more sophisticated procedures. Hammering a nail became easier and more painless thanks to a simple trick, so did moving heavy stones or wood using a cart. But, what’s the difference between these two examples? Even if the latter is still a simple machine, its complexity allows a person to carry out a composite task without thinking about each step. Some fundamental mechanical laws play a primary role in allowing a horizontal force to contrast gravity efficiently, but neither human beings nor horses or oxen knew anything about them. The primitive people simply observed how a genial trick (the wheel) could improve their lives.

The lesson we've learned is that a machine is never efficient or trendy without a concrete possibility to use it with pragmatism. A machine is immediately considered useful and destined to be continuously improved if its users can easily understand what tasks can be completed with less effort or completely automatically. In the latter case, some intelligence seems to appear next to cogs, wheels, or axles. So a further step can be added to our evolution list: automatic machines, built (nowadays we’d say programmed) to accomplish specific goals by transforming energy into work. Wind or watermills are some examples of elementary tools able to carry out complete tasks with minimal (compared to a direct activity) human control.

In the following figure, there's a generic representation of a classical system that receives some input values, processes them, and produces output results:

But again, what’s the key to the success of a mill? It’s not hasty at all to say that human beings have tried to transfer some intelligence into their tools since the dawn of technology. Both the water in a river and the wind show a behavior that we can simply call flowing. They have a lot of energy to give us free of any charge, but a machine should have some awareness to facilitate this process. A wheel can turn around a fixed axle millions of times, but the wind must find a suitable surface to push on. The answer seems obvious, but you should try to think about people without any knowledge or experience; even if implicitly, they started a brand new approach to technology. If you prefer to reserve the word intelligence to more recent results, it’s possible to say that the path started with tools, moved first to simple machines and then to smarter ones.

Without further intermediate (but not less important) steps, we can jump into our epoch and change the scope of our discussion. Programmable computers are widespread, flexible, and more and more powerful instruments; moreover, the diffusion of the internet allowed us to share software applications and related information with minimal effort. The word-processing software that I'm using, my email client, a web browser, and many other common tools running on the same machine are all examples of such flexibility. It's undeniable that the IT revolution dramatically changed our lives and sometimes improved our daily jobs, but without machine learning (and all its applications), there are still many tasks that seem far out of computer domain. Spam filtering, Natural Language Processing, visual tracking with a webcam or a smartphone, and predictive analysis are only a few applications that revolutionized human-machine interaction and increased our expectations. In many cases, they transformed our electronic tools into actual cognitive extensions that are changing the way we interact with many daily situations. They achieved this goal by filling the gap between human perception, language, reasoning, and model and artificial instruments.

Here's a schematic representation of an adaptive system:

Such a system isn't based on static or permanent structures (model parameters and architectures) but rather on a continuous ability to adapt its behavior to external signals (datasets or real-time inputs) and, like a human being, to predict the future using uncertain and fragmentary pieces of information.

You have been reading a chapter from
Machine Learning Algorithms
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781785889622
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime