Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
LLVM Essentials

You're reading from   LLVM Essentials Become familiar with the LLVM infrastructure and start using LLVM libraries to design a compiler

Arrow left icon
Product type Paperback
Published in Dec 2015
Publisher
ISBN-13 9781785280801
Length 166 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Suyog Sarda Suyog Sarda
Author Profile Icon Suyog Sarda
Suyog Sarda
Mayur Pandey Mayur Pandey
Author Profile Icon Mayur Pandey
Mayur Pandey
David Farago David Farago
Author Profile Icon David Farago
David Farago
John Criswell John Criswell
Author Profile Icon John Criswell
John Criswell
Arrow right icon
View More author details
Toc

Modular design and collection of libraries

The most important thing about LLVM is that it is designed as a collection of libraries. Let's understand these by taking the example of LLVM optimizer opt. There are many different optimization passes that the optimizer can run. Each of these passes is written as a C++ class derived from the Pass class of LLVM. Each of the written passes can be compiled into a .o file and subsequently they are archived into a .a library. This library will contain all the passes for opt tool. All the passes in this library are loosely coupled, that is they mention explicitly the dependencies on other passes.

When the optimizer is ran, the LLVM PassManager uses the explicitly mentioned dependency information and runs the passes in optimal way. The library based design allows the implementer to choose the order in which passes will execute and also choose which passes are to be executed based on the requirements. Only the passes that are required are linked to the final application, not the entire optimizer.

The following figure demonstrates how each pass can be linked to a specific object file within a specific library. In the following figure, the PassA references LLVMPasses.a for PassA.o, whereas the custom pass refers to a different library MyPasses.a for the MyPass.o object file.

Modular design and collection of libraries

The code generator also makes use of this modular design like the Optimizer, for splitting the code generation into individual passes, namely, instruction selection, register allocation, scheduling, code layout optimization, and assembly emission.

In each of the following phases mentioned there are some common things for almost every target, such as an algorithm for assigning physical registers available to virtual registers even though the set of registers for different targets vary. So, the compiler writer can modify each of the passes mentioned above and create custom target-specific passes. The use of the tablegen tool helps in achieving this using table description .td files for specific architectures. We will discuss how this happens later in the book.

Another capability that arises out of this is the ability to easily pinpoint a bug to a particular pass in the optimizer. A tool name Bugpoint makes use of this capability to automatically reduce the test case and pinpoint the pass that is causing the bug.

You have been reading a chapter from
LLVM Essentials
Published in: Dec 2015
Publisher:
ISBN-13: 9781785280801
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image