Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learn TensorFlow Enterprise

You're reading from   Learn TensorFlow Enterprise Build, manage, and scale machine learning workloads seamlessly using Google's TensorFlow Enterprise

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800209145
Length 314 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
KC Tung KC Tung
Author Profile Icon KC Tung
KC Tung
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 – TensorFlow Enterprise Services and Features
2. Chapter 1: Overview of TensorFlow Enterprise FREE CHAPTER 3. Chapter 2: Running TensorFlow Enterprise in Google AI Platform 4. Section 2 – Data Preprocessing and Modeling
5. Chapter 3: Data Preparation and Manipulation Techniques 6. Chapter 4: Reusable Models and Scalable Data Pipelines 7. Section 3 – Scaling and Tuning ML Works
8. Chapter 5: Training at Scale 9. Chapter 6: Hyperparameter Tuning 10. Section 4 – Model Optimization and Deployment
11. Chapter 7: Model Optimization 12. Chapter 8: Best Practices for Model Training and Performance 13. Chapter 9: Serving a TensorFlow Model 14. Other Books You May Enjoy

Applying models from TensorFlow Hub

TensorFlow Hub contains many reusable models. For example, in image classification tasks, there are pretrained models such as Inception V3, ResNet of different versions, as well as feature vectors available. In this chapter, we will take a look at how to load and use a ResNet feature vector model for image classification of our own images. The images are five types of flowers: daisy, dandelion, roses, sunflowers, and tulips. We will use the tf.keras API to get these images for our use:

  1. You may use Google Cloud AI Platform's JupyterLab environment for this work. Once you are in the AI Platform's JupyterLab environment, you may start by importing the necessary modules and download the images:
    import tensorflow as tf
    import tensorflow_hub as hub
    import matplotlib.pyplot as plt
    import numpy as np
    data_dir = tf.keras.utils.get_file(
        'flower_photos',
        'https://storage.googleapis...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image