Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Generative Adversarial Networks Cookbook

You're reading from   Generative Adversarial Networks Cookbook Over 100 recipes to build generative models using Python, TensorFlow, and Keras

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781789139907
Length 268 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Josh Kalin Josh Kalin
Author Profile Icon Josh Kalin
Josh Kalin
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. What Is a Generative Adversarial Network? FREE CHAPTER 2. Data First, Easy Environment, and Data Prep 3. My First GAN in Under 100 Lines 4. Dreaming of New Outdoor Structures Using DCGAN 5. Pix2Pix Image-to-Image Translation 6. Style Transfering Your Image Using CycleGAN 7. Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN 8. From Image to 3D Models Using GANs 9. Other Books You May Enjoy

Basic building block – discriminator

The generator generates the data in the GAN architecture, and now we are going to introduce the Discriminator architecture. The discriminator is used to determine whether the output of the generator and a real image are real or fake.

How to do it...

The discriminator architecture determines whether the image is real or fake. In this case, we are focused solely on the neural network that we are going to create- this doesn't involve the training step that we'll cover in the training recipe in this chapter:

The basic components of the discriminator architecture

The discriminator is typically a simple Convolution Neural Network (CNN) in simple architectures. In our first few examples, this is the type of neural network we'll be using.

Here are a few steps to illustrate how we would build a discriminator:

  1. First, we'll create a convolutional neural network to classify real or fake (binary classification)
  2. We'll create a dataset of real data and we'll use our generator to create fake dataset
  3. We train the discriminator model on the real and fake data
  4. We'll learn to balance training of the discriminator with the generator training - if the discriminator is too good, the generator will diverge

How it works...

So, why even use the discriminator in this case? The discriminator is able to take all of the good things we have with discriminative models and act as an adaptive loss function for the GAN as a whole. This means that the discriminator is able to adapt to the underlying distribution of data. This is one of the reasons that current deep learning discriminative models are so successful today—in the past, techniques relied too heavily on directly computing some heuristic on the underlying data distribution. Deep neural networks today are able to adapt and learn based on the distribution of the data, and the GAN technique takes advantage of that. 

Ultimately, the discriminator is going to evaluate the output of the real image and the generated image for authenticity. The real images will score high on the scale initially, while the generated images will score lower. Eventually, the discriminator will have trouble distinguishing between the generated and real images. The discriminator will rely on building a model and potentially an initial loss function. The following class template will be used throughout this book to represent the discriminator:

Class template for developing the discriminator—these represent the basic components we need to implement for each of our discriminator classes

In the end, the discriminator will be trained along with the generator in a sequential model; we'll only use the trainModel method in this class for specific architectures. For the sake of simplicity and uniformity, the method will go unimplemented in most recipes.

You have been reading a chapter from
Generative Adversarial Networks Cookbook
Published in: Dec 2018
Publisher: Packt
ISBN-13: 9781789139907
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image