Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Ethereum Smart Contract Development

You're reading from   Ethereum Smart Contract Development Build blockchain-based decentralized applications using solidity

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788473040
Length 288 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mayukh Mukhopadhyay Mayukh Mukhopadhyay
Author Profile Icon Mayukh Mukhopadhyay
Mayukh Mukhopadhyay
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Blockchain Basics 2. Grokking Ethereum FREE CHAPTER 3. Hello World of Smart Contracts 4. A Noob's Guide to DApps and DAO 5. Deep-Diving into Smart Contracts 6. Solidity in Depth 7. Primer on Web3.js 8. Developing a Cryptocurrency from Scratch 9. Enterprise Use Cases 10. BaaS and the Dark Web Market 11. Advanced Topics and the Road Ahead 12. Other Books You May Enjoy

Understanding distributed systems

To understand a distributed system, we need to first distinguish it from traditional centralized systems. Traditional centralized systems consist of two main components: the client and the server. In the simplest setup, the client is the one who makes a request for getting a job done, and a server is the one who gets it done. This was how web 1.0 operated; the one we started calling the World Wide Web. For example, you placed a search request on Google search engine, and it gave you back a set of web links and summarized results.

Now, if two clients want to communicate between each other, they have to place request via the server, which serves as the middleman. A second example might be, for instance, if I send you a message from the client app of my mobile, this message is pushed to the WhatsApp server, which then notifies your client app about my message. Once you see my message, your client app sends back an acknowledgement signal in terms of a blue double tick to my client app, again using the WhatsApp server. This is how the present internet operates and we call it web 2.0, the advent of the social network. In both of these examples, we can see the centralized system works just fine. In Figure 1.1, this centralized setup is represented by the left-side lego block setup. The aggregated middle blocks represent the server, whereas the circumferential isolated blocks represent the clients. However, these centralized servers are generally owned by business organizations and can be influenced by a criminal entity or central authority to leak private data while the clients communicate. To overcome this fundamental flaw, peer-to-peer networking (web 3.0) came into practice (for example, BitTorrent). These were distributed systems, as depicted in the right of Figure 1.1, where each node can be a client or server or both and are not distinguishable from other nodes. Even though these systems were good at privacy, they faced challenges like the Byzantine Generals' Problem and the CAP theorem, which we will discuss in the subsequent sections.

Figure 1.1: Lego block representation of centralized system (left) and distributed system (right)
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image