Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Distributed Data Systems with Azure Databricks

You're reading from   Distributed Data Systems with Azure Databricks Create, deploy, and manage enterprise data pipelines

Arrow left icon
Product type Paperback
Published in May 2021
Publisher Packt
ISBN-13 9781838647216
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alan Bernardo Palacio Alan Bernardo Palacio
Author Profile Icon Alan Bernardo Palacio
Alan Bernardo Palacio
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Introducing Databricks
2. Chapter 1: Introduction to Azure Databricks FREE CHAPTER 3. Chapter 2: Creating an Azure Databricks Workspace 4. Section 2: Data Pipelines with Databricks
5. Chapter 3: Creating ETL Operations with Azure Databricks 6. Chapter 4: Delta Lake with Azure Databricks 7. Chapter 5: Introducing Delta Engine 8. Chapter 6: Introducing Structured Streaming 9. Section 3: Machine and Deep Learning with Databricks
10. Chapter 7: Using Python Libraries in Azure Databricks 11. Chapter 8: Databricks Runtime for Machine Learning 12. Chapter 9: Databricks Runtime for Deep Learning 13. Chapter 10: Model Tracking and Tuning in Azure Databricks 14. Chapter 11: Managing and Serving Models with MLflow and MLeap 15. Chapter 12: Distributed Deep Learning in Azure Databricks 16. Other Books You May Enjoy

Introducing Delta Lake

Using a data lake has become the de facto solution for many data engineering tasks. This storage layer is composed of files that can be arranged in a historical way instead of tables in a data warehouse. This has the benefit of decoupling storage from computing, which is the great advantage of data lakes. They are much cheaper than a database. The data that's stored in the data lake has no primary and foreign keys, making it hard to extract the information stored on it. Therefore, data lakes are seen as a solution where we only append new data. When trying to query or delete records, we need to go through all the files in the data lake, which could be a very resource-intensive and slow task.

This leads to data lakes being hard to update, and they may have problems when we try to use them in cases where data needs to be frequently queried. This includes customer or transactional data, financial applications that require robust data handling, or when we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image