Cool applications of GANs
We have seen that the generator can learn how to forge data. This means that it learns how to create new synthetic data that is created by the network that appears to be authentic and human-made. Before going into the details of some GAN code, we would like to share the results of the paper [6] (code is available online at https://github.com/hanzhanggit/StackGAN) where a GAN has been used to synthesize forged images starting from a text description. The results are impressive: the first column is the real image in the test set and all the rest of the columns are the images generated from the same text description by Stage-I and Stage-II of StackGAN. More examples are available on YouTube (https://www.youtube.com/watch?v=SuRyL5vhCIM&feature=youtu.be):
Figure 9.15: Image generation of birds, using GANs
Figure 9.16: Image generation of flowers, using GANs
Now let us see how a GAN can learn to “forge” the MNIST dataset...