Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning for Natural Language Processing

You're reading from   Deep Learning for Natural Language Processing Solve your natural language processing problems with smart deep neural networks

Arrow left icon
Product type Paperback
Published in Jun 2019
Publisher
ISBN-13 9781838550295
Length 372 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Karthiek Reddy Bokka Karthiek Reddy Bokka
Author Profile Icon Karthiek Reddy Bokka
Karthiek Reddy Bokka
Monicah Wambugu Monicah Wambugu
Author Profile Icon Monicah Wambugu
Monicah Wambugu
Tanuj Jain Tanuj Jain
Author Profile Icon Tanuj Jain
Tanuj Jain
Shubhangi Hora Shubhangi Hora
Author Profile Icon Shubhangi Hora
Shubhangi Hora
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

About the Book 1. Introduction to Natural Language Processing FREE CHAPTER 2. Applications of Natural Language Processing 3. Introduction to Neural Networks 4. Foundations of Convolutional Neural Network 5. Recurrent Neural Networks 6. Gated Recurrent Units (GRUs) 7. Long Short-Term Memory (LSTM) 8. State-of-the-Art Natural Language Processing 9. A Practical NLP Project Workflow in an Organization 1. Appendix

Chapter 9: A practical NLP project workflow in an organisation

Code for LSTM model

  1. Check if GPU is detected

    import tensorflow as tf

    tf.test.gpu_device_name()

  2. Setting up collar notebook

    from google.colab import drive

    drive.mount('/content/gdrive')

    # Run the below command in a new cell

    cd /content/gdrive/My Drive/Lesson-9/

    # Run the below command in a new cell

    !unzip data.csv.zip

  3. Import necessary Python packages and classes.

    import os

    import re

    import pickle

    import pandas as pd

    from keras.preprocessing.text import Tokenizer

    from keras.preprocessing.sequence import pad_sequences

    from keras.models import Sequential

    from keras.layers import Dense, Embedding, LSTM

  4. Load the data file.

    def preprocess_data(data_file_path):

    data = pd.read_csv(data_file_path, header=None) # read the csv

    data.columns = ['rating', 'title', 'review'] # add column names

    data['review'] = data['review'].apply(lambda x: x.lower()) # change all text to lower

    data['review'] = data['review'].apply((lambda x: re.sub('[^a-zA-z0-9\s]','',x))) # remove all numbers

    return data

    df = preprocess_data('data.csv')

  5. Initialize tokenization.

    max_features = 2000

    maxlength = 250

    tokenizer = Tokenizer(num_words=max_features, split=' ')

  6. Fit tokenizer.

    tokenizer.fit_on_texts(df['review'].values)

    X = tokenizer.texts_to_sequences(df['review'].values)

  7. Pad sequences.

    X = pad_sequences(X, maxlen=maxlength)

  8. Get target variable

    y_train = pd.get_dummies(df.rating).values

    embed_dim = 128

    hidden_units = 100

    n_classes = 5

    model = Sequential()

    model.add(Embedding(max_features, embed_dim, input_length = X.shape[1]))

    model.add(LSTM(hidden_units))

    model.add(Dense(n_classes, activation='softmax'))

    model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy'])

    print(model.summary())

  9. Fit the model.

    model.fit(X[:100000, :], y_train[:100000, :], batch_size = 128, epochs=15, validation_split=0.2)

  10. Save model and tokenizer.

    model.save('trained_model.h5') # creates a HDF5 file 'trained_model.h5'

    with open('trained_tokenizer.pkl', 'wb') as f: # creates a pickle file 'trained_tokenizer.pkl'

    pickle.dump(tokenizer, f)

    from google.colab import files

    files.download('trained_model.h5')

    files.download('trained_tokenizer.pkl')

Code for Flask

  1. Import the necessary Python packages and classes.

    import re

    import pickle

    import numpy as np

    from flask import Flask, request, jsonify

    from keras.models import load_model

    from keras.preprocessing.sequence import pad_sequences

  2. Define the input files and load in dataframe

    def load_variables():

    global model, tokenizer

    model = load_model('trained_model.h5')

    model._make_predict_function() # https://github.com/keras-team/keras/issues/6462

    with open('trained_tokenizer.pkl', 'rb') as f:

    tokenizer = pickle.load(f)

  3. Define preprocessing functions similar to the training code:

    def do_preprocessing(reviews):

    processed_reviews = []

    for review in reviews:

    review = review.lower()

    processed_reviews.append(re.sub('[^a-zA-z0-9\s]', '', review))

    processed_reviews = tokenizer.texts_to_sequences(np.array(processed_reviews))

    processed_reviews = pad_sequences(processed_reviews, maxlen=250)

    return processed_reviews

  4. Define a Flask app instance:

    app = Flask(__name__)

  5. Define an endpoint that displays a fixed message:

    @app.route('/')

    def home_routine():

    return 'Hello World!'

  6. We'll have a prediction endpoint, to which we can send our review strings. The kind of HTTP request we will use is a 'POST' request:

    @app.route('/prediction', methods=['POST'])

    def get_prediction():

    # get incoming text

    # run the model

    if request.method == 'POST':

    data = request.get_json()

    data = do_preprocessing(data)

    predicted_sentiment_prob = model.predict(data)

    predicted_sentiment = np.argmax(predicted_sentiment_prob, axis=-1)

    return str(predicted_sentiment)

  7. Start the web server.

    if __name__ == '__main__':

    # load model

    load_variables()

    app.run(debug=True)

  8. Save this file as app.py (any name could be used). Run this code from the terminal using app.py:

    python app.py

    The output is as follows:

Figure 9.31: Output for flask
Figure 9.31: Output for flask
lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image