Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science  with Python

You're reading from   Data Science with Python Combine Python with machine learning principles to discover hidden patterns in raw data

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781838552862
Length 426 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Rohan Chopra Rohan Chopra
Author Profile Icon Rohan Chopra
Rohan Chopra
Mohamed Noordeen Alaudeen Mohamed Noordeen Alaudeen
Author Profile Icon Mohamed Noordeen Alaudeen
Mohamed Noordeen Alaudeen
Aaron England Aaron England
Author Profile Icon Aaron England
Aaron England
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

About the Book 1. Introduction to Data Science and Data Pre-Processing FREE CHAPTER 2. Data Visualization 3. Introduction to Machine Learning via Scikit-Learn 4. Dimensionality Reduction and Unsupervised Learning 5. Mastering Structured Data 6. Decoding Images 7. Processing Human Language 8. Tips and Tricks of the Trade 1. Appendix

Chapter 5: Mastering Structured Data

Activity 14: Training and Predicting the Income of a Person

Solution:

  1. Import the libraries and load the income dataset using pandas. First, import pandas and then read the data using read_csv.

    import pandas as pd

    import xgboost as xgb

    import numpy as np

    from sklearn.metrics import accuracy_score

    data = pd.read_csv("../data/adult-data.csv", names=['age', 'workclass', 'education-num', 'occupation', 'capital-gain', 'capital-loss', 'hours-per-week', 'income'])

    The reason we are passing the names of the columns is because the data doesn't contain them. We do this to make our lives easy.

  2. Use Label Encoder from sklearn to encode strings. First, import Label Encoder. Then, encode all string categorical columns one by one.

    from sklearn.preprocessing import LabelEncoder

    data['workclass'] = LabelEncoder().fit_transform(data['workclass'])

    data['occupation'] = LabelEncoder().fit_transform(data['occupation'])

    data['income'] = LabelEncoder().fit_transform(data['income'])

    Here, we encode all the categorical string data that we have. There is another method we can use to prevent writing the same piece of code again and again. See if you can find it.

  3. We first separate the dependent and independent variables.

    X = data.copy()

    X.drop("income", inplace = True, axis = 1)

    Y = data.income

  4. Then, we divide them into training and testing sets with an 80:20 split.

    X_train, X_test = X[:int(X.shape[0]*0.8)].values, X[int(X.shape[0]*0.8):].values

    Y_train, Y_test = Y[:int(Y.shape[0]*0.8)].values, Y[int(Y.shape[0]*0.8):].values

  5. Next, we convert them into DMatrix, a data structure that the library supports.

    train = xgb.DMatrix(X_train, label=Y_train)

    test = xgb.DMatrix(X_test, label=Y_test)

  6. Then, we use the following parameters to train the model using XGBoost.

    param = {'max_depth':7, 'eta':0.1, 'silent':1, 'objective':'binary:hinge'} num_round = 50

    model = xgb.train(param, train, num_round)

  7. Check the accuracy of the model.

    preds = model.predict(test)

    accuracy = accuracy_score(Y[int(Y.shape[0]*0.8):].values, preds)

    print("Accuracy: %.2f%%" % (accuracy * 100.0))

    The output is as follows:

Figure 5.36: Final model accuracy
Figure 5.36: Final model accuracy

Activity 15: Predicting the Loss of Customers

Solution:

  1. Load the income dataset using pandas. First, import pandas, and then read the data using read_csv.

    import pandas as pd

    import numpy as np

    data = data = pd.read_csv("data/telco-churn.csv")

  2. The customerID variable is not required because any future prediction will have a unique customerID, making this variable useless for prediction.

    data.drop('customerID', axis = 1, inplace = True)

  3. Convert all categorical variables to integers using scikit. One example is given below.

    from sklearn.preprocessing import LabelEncoder

    data['gender'] = LabelEncoder().fit_transform(data['gender'])

  4. Check the data types of the variables in the dataset.

    data.dtypes

    The data types of the variables will be shown as follows:

    Figure 5.37: Data types of variables
    Figure 5.37: Data types of variables
  5. As you can see, TotalCharges is an object. So, convert the data type of TotalCharges from object to numeric. coerce will make the missing values null.

    data.TotalCharges = pd.to_numeric(data.TotalCharges, errors='coerce')

  6. Convert the data frame to an XGBoost variable and find the best parameters for the dataset using the previous exercises as reference.

    import xgboost as xgb

    import matplotlib.pyplot as plt

    X = data.copy()

    X.drop("Churn", inplace = True, axis = 1)

    Y = data.Churn

    X_train, X_test = X[:int(X.shape[0]*0.8)].values, X[int(X.shape[0]*0.8):].values

    Y_train, Y_test = Y[:int(Y.shape[0]*0.8)].values, Y[int(Y.shape[0]*0.8):].values

    train = xgb.DMatrix(X_train, label=Y_train)

    test = xgb.DMatrix(X_test, label=Y_test)

    test_error = {}

    for i in range(20):

        param = {'max_depth':i, 'eta':0.1, 'silent':1, 'objective':'binary:hinge'}

        num_round = 50

        model_metrics = xgb.cv(param, train, num_round, nfold = 10)

        test_error[i] = model_metrics.iloc[-1]['test-error-mean']

    plt.scatter(test_error.keys(),test_error.values())

    plt.xlabel('Max Depth')

    plt.ylabel('Test Error')

    plt.show()

    Check out the output in the following screenshot:

    Figure 5.38: Graph of max depth to test error for telecom churn dataset
    Figure 5.38: Graph of max depth to test error for telecom churn dataset

    From the graph, it is clear that a max depth of 4 gives the least error. So, we will be using that to train our model.

  7. Create the model using the max_depth parameter that we chose from the previous steps.

    param = {'max_depth':4, 'eta':0.1, 'silent':1, 'objective':'binary:hinge'}

    num_round = 100

    model = xgb.train(param, train, num_round)

    preds = model.predict(test)

    from sklearn.metrics import accuracy_score

    accuracy = accuracy_score(Y[int(Y.shape[0]*0.8):].values, preds)

    print("Accuracy: %.2f%%" % (accuracy * 100.0))

    The output is as follows:

    Figure 5.39: Final accuracy
    Figure 5.39: Final accuracy
  8. Save the model for future use using the following code:

    model.save_model('churn-model.model')

Activity 16: Predicting a Customer's Purchase Amount

Solution:

  1. Load the Black Friday dataset using pandas. First, import pandas, and then, read the data using read_csv.

    import pandas as pd

    import numpy as np

    data = data = pd.read_csv("data/BlackFriday.csv")

  2. The User_ID variable is not required to allow predictions on new user Ids, so we drop it.

    data.isnull().sum()

    data.drop(['User_ID', 'Product_Category_2', 'Product_Category_3'], axis = 1, inplace = True)

    The product category variables have high null values, so we drop them as well.

  3. Convert all categorical variables to integers using scikit-learn.

    from collections import defaultdict

    from sklearn.preprocessing import LabelEncoder, MinMaxScaler

    label_dict = defaultdict(LabelEncoder)

    data[['Product_ID', 'Gender', 'Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Years', 'Marital_Status', 'Product_Category_1']] = data[['Product_ID', 'Gender', 'Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Years', 'Marital_Status', 'Product_Category_1']].apply(lambda x: label_dict[x.name].fit_transform(x))

  4. Split the data into training and testing sets and convert it into the form required by the embedding layers.

    from sklearn.model_selection import train_test_split

    X = data

    y = X.pop('Purchase')

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=9)

     

    cat_cols_dict = {col: list(data[col].unique()) for col in ['Product_ID', 'Gender', 'Age', 'Occupation', 'City_Category', 'Stay_In_Current_City_Years', 'Marital_Status', 'Product_Category_1']}

    train_input_list = []

    test_input_list = []

     

    for col in cat_cols_dict.keys():

        raw_values = np.unique(data[col])

        value_map = {}

        for i in range(len(raw_values)):

            value_map[raw_values[i]] = i

        train_input_list.append(X_train[col].map(value_map).values)

        test_input_list.append(X_test[col].map(value_map).fillna(0).values)

  5. Create the network using the embedding and dense layers in Keras and perform hyperparameter tuning to get the best accuracy.

    from keras.models import Model

    from keras.layers import Input, Dense, Concatenate, Reshape, Dropout

    from keras.layers.embeddings import Embedding

    cols_out_dict = {

        'Product_ID': 20,

        'Gender': 1,

        'Age': 2,

        'Occupation': 6,

        'City_Category': 1,

        'Stay_In_Current_City_Years': 2,

        'Marital_Status': 1,

        'Product_Category_1': 9

    }

     

    inputs = []

    embeddings = []

     

    for col in cat_cols_dict.keys():

     

        inp = Input(shape=(1,), name = 'input_' + col)

        embedding = Embedding(len(cat_cols_dict[col]), cols_out_dict[col], input_length=1, name = 'embedding_' + col)(inp)

        embedding = Reshape(target_shape=(cols_out_dict[col],))(embedding)

        inputs.append(inp)

        embeddings.append(embedding)

  6. Now, we create a three-layer network after the embedding layers.

    x = Concatenate()(embeddings)

    x = Dense(4, activation='relu')(x)

    x = Dense(2, activation='relu')(x)

    output = Dense(1, activation='relu')(x)

     

    model = Model(inputs, output)

     

    model.compile(loss='mae', optimizer='adam')

     

    model.fit(train_input_list, y_train, validation_data = (test_input_list, y_test), epochs=20, batch_size=128)

  7. Check the RMSE of the model on the test set.

    from sklearn.metrics import mean_squared_error

    y_pred = model.predict(test_input_list)

    np.sqrt(mean_squared_error(y_test, y_pred))

    The RMSE is:

    Figure 5.40: RMSE model
    Figure 5.40: RMSE model
  8. Visualize the product ID embedding.

    import matplotlib.pyplot as plt

    from sklearn.decomposition import PCA

    embedding_Product_ID = model.get_layer('embedding_Product_ID').get_weights()[0]

    pca = PCA(n_components=2)

    Y = pca.fit_transform(embedding_Product_ID[:40])

    plt.figure(figsize=(8,8))

    plt.scatter(-Y[:, 0], -Y[:, 1])

    for i, txt in enumerate(label_dict['Product_ID'].inverse_transform(cat_cols_dict['Product_ID'])[:40]):

        plt.annotate(txt, (-Y[i, 0],-Y[i, 1]), xytext = (-20, 8), textcoords = 'offset points')

    plt.show()

    The plot is as follows:

    Figure 5.41: Plot of clustered model

    From the plot, you can see that similar products have been clustered together by the model.

  9. Save the model for future use.

    model.save ('black-friday.model')

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image