Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analytics for Marketing

You're reading from   Data Analytics for Marketing A practical guide to analyzing marketing data using Python

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803241609
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Guilherme Diaz-Bérrio Guilherme Diaz-Bérrio
Author Profile Icon Guilherme Diaz-Bérrio
Guilherme Diaz-Bérrio
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Fundamentals of Analytics
2. Chapter 1: What is Marketing Analytics? FREE CHAPTER 3. Chapter 2: Extracting and Exploring Data with Singer and pandas 4. Chapter 3: Design Principles and Presenting Results with Streamlit 5. Chapter 4: Econometrics and Causal Inference with Statsmodels and PyMC 6. Part 2: Planning Ahead
7. Chapter 5: Forecasting with Prophet, ARIMA, and Other Models Using StatsForecast 8. Chapter 6: Anomaly Detection with StatsForecast and PyMC 9. Part 3: Who and What to Target
10. Chapter 7: Customer Insights – Segmentation and RFM 11. Chapter 8: Customer Lifetime Value with PyMC Marketing 12. Chapter 9: Customer Survey Analysis 13. Chapter 10: Conjoint Analysis with pandas and Statsmodels 14. Part 4: Measuring Effectiveness
15. Chapter 11: Multi-Touch Digital Attribution 16. Chapter 12: Media Mix Modeling with PyMC Marketing 17. Chapter 13: Running Experiments with PyMC 18. Index 19. Other Books You May Enjoy

Summary

This chapter delved into anomaly detection, exploring various strategies to effectively pinpoint unexpected patterns or outliers within data, which often indicate critical events or atypical activities that merit further investigation. It began with the STL method, which breaks down a time series into trend, seasonality, and remainder components, thereby facilitating the identification of anomalies that cannot be accounted for by underlying trends or seasonality. We then shifted to the robust S-H-ESD test, known for its effectiveness in identifying anomalies in time-series data, and the use of forecasting tools such as the StatsForecast library for anomaly detection, which, despite certain limitations with low-frequency data, has proven adaptable and beneficial across diverse data scenarios.

The chapter wrapped up by weighing the pros and cons of each technique discussed, emphasizing the importance of choosing the right method based on the specific nature of the data and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime