Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Architecture and Design of the Linux Storage Stack

You're reading from   Architecture and Design of the Linux Storage Stack Gain a deep understanding of the Linux storage landscape and its well-coordinated layers

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781837639960
Length 246 pages
Edition 1st Edition
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Muhammad Umer Muhammad Umer
Author Profile Icon Muhammad Umer
Muhammad Umer
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Diving into the Virtual Filesystem
2. Chapter 1: Where It All Starts From – The Virtual Filesystem FREE CHAPTER 3. Chapter 2: Explaining the Data Structures in a VFS 4. Chapter 3: Exploring the Actual Filesystems Under the VFS 5. Part 2: Navigating Through the Block Layer
6. Chapter 4: Understanding the Block Layer, Block Devices, and Data Structures 7. Chapter 5: Understanding the Block Layer, Multi-Queue, and Device Mapper 8. Chapter 6: Understanding I/O Handling and Scheduling in the Block Layer 9. Part 3: Descending into the Physical Layer
10. Chapter 7: The SCSI Subsystem 11. Chapter 8: Illustrating the Layout of Physical Media 12. Part 4: Analyzing and Troubleshooting Storage Performance
13. Chapter 9: Analyzing Physical Storage Performance 14. Chapter 10: Analyzing Filesystems and the Block Layer 15. Chapter 11: Tuning the I/O Stack 16. Index 17. Other Books You May Enjoy

Understanding system calls

While looking at the figure explaining the interaction between applications and the Virtual Filesystem, you may have noticed the intermediary layer between user space programs and the Virtual Filesystem; that layer is known as the system call interface. To request some service from the kernel, user space programs invoke the system call interface. These system calls provide the means for end user applications to access the resources in the kernel space, such as the processor, memory, and storage. The system call interface serves three main purposes:

  • Ensuring security: System calls prevent user space applications from directly modifying resources in the kernel space
  • Abstraction: Applications do not need to concern themselves with the underlying hardware specifications
  • Portability: User programs can be run correctly on all kernels that implement the same set of interfaces

There’s often some confusion about the differences between system calls and an application programming interface (API). An API is a set of programming interfaces used by a program. These interfaces define a method of communication between two components. An API is implemented in user space and outlines how to acquire a particular service. A system call is a much lower-level mechanism that uses interrupts to make an explicit request to the kernel. The system call interface is provided by the standard C library in Linux.

If the system call generated by the calling process succeeds, a file descriptor is returned. A file descriptor is an integer number that is used to access files. For example, when a file is opened using the open () system call, a file descriptor is returned to the calling process. Once a file has been opened, programs use the file descriptor to perform operations on the file. All read, write, and other operations are performed using the file descriptor.

Every process always has a minimum of three files opened – standard input, standard output, and standard error – represented by the 0, 1, and 2 file descriptors, respectively. The next file opened will be assigned the file descriptor value of 3. If we do some file listing through ls and run a simple strace, the open system call will return a value of 3, which is the file descriptor representing the file – /etc/hosts, in this case. After that, this file descriptor value of 3 is used by the fstat and close calls to perform further operations:

strace ls /etc/hosts
root@linuxbox:~# strace ls /etc/hosts
execve("/bin/ls", ["ls", "/etc/hosts"], 0x7ffdee289b48 /* 22 vars */) = 0
brk(NULL)                               = 0x562b97fc6000
access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT (No such file or directory)
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=140454, ...}) = 0
mmap(NULL, 140454, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fbaa2519000
close(3)                                = 0
access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

[The rest of the code is skipped for brevity.]

On x86 systems, there are around 330 system calls. This number could be different for other architectures. Each system call is represented by a unique integer number. You can list the available system calls on your system using the ausyscall command. This will list the system calls and their corresponding integer values:

ausyscall –dump
root@linuxbox:~# ausyscall --dump
Using x86_64 syscall table:
0       read
1       write
2       open
3       close
4       stat
5       fstat
6       lstat
7       poll
8       lseek
9       mmap
10      mprotect

[The rest of the code is skipped for brevity.]

root@linuxbox:~# ausyscall --dump|wc -l
334
root@linuxbox:~#

The following table lists some common system calls:

System call

Description

open (), close ()

Open and close files

create ()

Create a file

chroot ()

Change the root directory

mount (), umount ()

Mount and unmount filesystems

lseek ()

Change the pointer position in a file

read (), write ()

Read and write in a file

stat (), fstat ()

Get a file status

statfs (), fstatfs ()

Get filesystem statistics

execve ()

Execute the program referred to by pathname

access ()

Checks whether the calling process can access the file pathname

mmap ()

Creates a new mapping in the virtual address space of the calling process

Table 1.1 – Some common system calls

So, what role do the system calls play in interacting with filesystems? As we’ll see in the succeeding section, when a user space process generates a system call to access resources in the kernel space, the first component it interacts with is the Virtual Filesystem. This system call is first handled by the corresponding system call handler in the kernel, and after validating the operation requested, the handler makes a call to the appropriate function in the VFS layer. The VFS layer passes the request on to the appropriate filesystem driver module, which performs the actual operations on the file.

We need to understand the why here – why would the process interact with the Virtual Filesystem and not the actual filesystem on the disk? In the upcoming section, we’ll try to figure this out.

To summarize, the system calls interface in Linux implements generic methods that can be used by the applications in user space to access resources in the kernel space.

You have been reading a chapter from
Architecture and Design of the Linux Storage Stack
Published in: Jul 2023
Publisher: Packt
ISBN-13: 9781837639960
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image