One of the most important requirements when it comes to training machine learning (ML) models and deep neural networks (DNNs) is having large training datasets with distributions (mostly unknown, which we learn about during ML or DNN training) from a given sample space so that ML models and DNNs can learn from this given training data and generalize well to unseen future or separated out test data. Also, a validation dataset, which often comes from the same source as the training set distribution, is critical to fine-tuning model hyperparameters. In many cases, developers start with whatever data is available—either a little or a lot—to train machine learning models, including high capacity deep neural networks. Regardless of the data's size and format, it is important to feed training, validation, and test data...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand