Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Unity 2017 Game Optimization

You're reading from   Unity 2017 Game Optimization Optimize all aspects of Unity performance

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher
ISBN-13 9781788392365
Length 376 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Chris Dickinson Chris Dickinson
Author Profile Icon Chris Dickinson
Chris Dickinson
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Pursuing Performance Problems 2. Scripting Strategies FREE CHAPTER 3. The Benefits of Batching 4. Kickstart Your Art 5. Faster Physics 6. Dynamic Graphics 7. Virtual Velocity and Augmented Acceleration 8. Masterful Memory Management 9. Tactical Tips and Tricks

Final thoughts on Profiling and Analysis

One way of thinking about performance optimization is the act of stripping away unnecessary tasks that spend valuable resources. We can do the same and maximize our own productivity through minimizing any wasted effort. Effective use of the tools we have at our disposal is of paramount importance. It would serve us well to optimize our own workflow by keeping aware of some best practices and techniques.

Most, if not all, advice for using any kind of data-gathering tool properly can be summarized into three different strategies:

  • Understanding the tool
  • Reducing noise
  • Focusing on the issue

Understanding the Profiler

The Profiler is an arguably well-designed and intuitive tool, so understanding the majority of its feature set can be gained by simply spending an hour or two exploring its options with a test project and reading its documentation. The more we know about a tool in terms of its benefits, pitfalls, features, and limitations, the more sense we can make of the information it is giving us, so it is worth spending the time to use it in a playground setting. We don't want to be two weeks away from release, with a hundred performance defects to fix, with no idea how to do performance analysis efficiently.

For example, always remain aware of the relative nature of the Timeline View's graphical display. The Timeline View does not provide values on its vertical axis and automatically readjusts this axis based on the content of the last 300 frames; it can make small spikes appear to be a bigger problem than they really are because of the relative change. So, just because a spike or resting state in the timeline seems large and threatening does not necessarily mean there is a performance issue.

Several Areas in the Timeline View provide helpful benchmark bars, which appear as horizontal lines with a timing and FPS value associated with them. These should be used to determine the magnitude of the problem. Don't let the Profiler trick us into thinking that big spikes are always bad. As always, it's only important if the user will notice it.

As an example, if a large CPU usage spike does not exceed the 60 FPS or 30 FPS benchmark bars (depending on the application's target frame rate), then it would be wise to ignore it and search elsewhere for CPU performance issues, as no matter how much we improve the offending piece of code, it will probably never be noticed by the end user, and therefore isn't a critical issue that affects user experience.

Reducing noise

The classical definition of noise (at least in the realm of computer science) is meaningless data, and a batch of profiling data that was blindly captured with no specific target in mind is always full of data that won't interest us. More sources of data takes more time to mentally process and filter, which can be very distracting. One of the best methods to avoid this is to simply reduce the amount of data we need to process by stripping away any data deemed non-vital to the current situation.

Reducing clutter in the Profiler's graphical interface will make it easier to determine which subsystems are causing a spike in resource usage. Remember to use the colored checkboxes in each Timeline View Area to narrow the search.

Be warned that these settings are auto-saved in the Editor, so ensure that you re-enable them for the next profiling session, as this might cause us to miss something important next time.

Also, GameObjects can be deactivated to prevent them from generating profiling data, which will also help reduce clutter in our profiling data. This will naturally cause a slight performance boost for each object we deactivate. However, if we're gradually deactivating objects and performance suddenly becomes significantly more acceptable when a specific object is deactivated, then clearly that object is related to the root cause of the problem.

Focusing on the issue

This category may seem redundant, given that we've already covered reducing noise. All we should have left is the issue at hand, right? Not exactly. Focus is the skill of not letting ourselves become distracted by inconsequential tasks and wild goose chases.

Recall that profiling with the Unity Profiler comes with a minor performance cost. This cost is even more severe when using the Deep Profiling option. We might even introduce more minor performance costs into our application with additional logging. It's easy to forget when and where we introduced profiling code if the hunt continues for several hours.

We are effectively changing the result by measuring it. Any changes we implement during data sampling can sometimes lead us to chase after non-existent bugs in the application, when we could have saved ourselves a lot of time by attempting to replicate the scenario without additional profiling instrumentation. If the bottleneck is reproducible and noticeable without profiling, then it's a candidate to begin an investigation. However, if new bottlenecks keep appearing in the middle of an existing investigation, then keep in mind that they could be bottlenecks we introduced with our test code and not an existing problem that's been newly exposed.

Finally, when we have finished profiling, completed our fixes, and are now ready to move on to the next investigation, we should make sure to profile the application one last time to verify that the changes have had the intended effect.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image