Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Transformers for Natural Language Processing

You're reading from   Transformers for Natural Language Processing Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781800565791
Length 384 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with the Model Architecture of the Transformer 2. Fine-Tuning BERT Models FREE CHAPTER 3. Pretraining a RoBERTa Model from Scratch 4. Downstream NLP Tasks with Transformers 5. Machine Translation with the Transformer 6. Text Generation with OpenAI GPT-2 and GPT-3 Models 7. Applying Transformers to Legal and Financial Documents for AI Text Summarization 8. Matching Tokenizers and Datasets 9. Semantic Role Labeling with BERT-Based Transformers 10. Let Your Data Do the Talking: Story, Questions, and Answers 11. Detecting Customer Emotions to Make Predictions 12. Analyzing Fake News with Transformers 13. Other Books You May Enjoy
14. Index
Appendix: Answers to the Questions

The rise of the Transformer: Attention Is All You Need

In December 2017, Vaswani et al. published their seminal paper, Attention Is All You Need. They performed their work at Google Research and Google Brain. I will refer to the model described in Attention Is All You Need as the "original Transformer model" throughout this chapter and book.

In this section, we will look at the Transformer model they built from the outside. In the following sections, we will explore what is inside each component of the model.

The original Transformer model is a stack of 6 layers. The output of layer l is the input of layer l+1 until the final prediction is reached. There is a 6-layer encoder stack on the left and a 6-layer decoder stack on the right:

Figure 1.2: The architecture of the Transformer

On the left, the inputs enter the encoder side of the Transformer through an attention sub-layer and FeedForward Network (FFN) sub-layer. On the right, the target outputs go...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime