Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
TinyML Cookbook

You're reading from   TinyML Cookbook Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801814973
Length 344 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Gian Marco Iodice Gian Marco Iodice
Author Profile Icon Gian Marco Iodice
Gian Marco Iodice
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Chapter 1: Getting Started with TinyML 2. Chapter 2: Prototyping with Microcontrollers FREE CHAPTER 3. Chapter 3: Building a Weather Station with TensorFlow Lite for Microcontrollers 4. Chapter 4: Voice Controlling LEDs with Edge Impulse 5. Chapter 5: Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the Arduino Nano 6. Chapter 6: Building a Gesture-Based Interface for YouTube Playback 7. Chapter 7: Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS 8. Chapter 8: Toward the Next TinyML Generation with microNPU 9. Other Books You May Enjoy

Chapter 5: Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the Arduino Nano

Computer vision is what made convolutional neural networks hugely popular. Without this deep learning algorithm, tasks such as object recognition, scene understanding, and pose estimation would be really challenging. Nowadays, many modern camera applications are powered by machine learning (ML), and we just need to take the smartphone to see them in action. Computer vision also finds space in microcontrollers, although with limitations given the reduced onboard memory.

In this chapter, we will see the benefit of adding sight to our tiny devices by recognizing indoor environments with the OV7670 camera module in conjunction with the Arduino Nano 33 BLE Sense board.

In the first part, we will learn how to acquire images from the OV7670 camera module. We will then focus on the model design, applying transfer learning with the Keras API to recognize kitchens and bathrooms. Finally...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image