Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Natural Language Processing Workshop

You're reading from   The Natural Language Processing Workshop Confidently design and build your own NLP projects with this easy-to-understand practical guide

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800208421
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Sohom Ghosh Sohom Ghosh
Author Profile Icon Sohom Ghosh
Sohom Ghosh
Nipun Sadvilkar Nipun Sadvilkar
Author Profile Icon Nipun Sadvilkar
Nipun Sadvilkar
Rohan Chopra Rohan Chopra
Author Profile Icon Rohan Chopra
Rohan Chopra
Muzaffar Bashir Shah Muzaffar Bashir Shah
Author Profile Icon Muzaffar Bashir Shah
Muzaffar Bashir Shah
Dwight Gunning Dwight Gunning
Author Profile Icon Dwight Gunning
Dwight Gunning
Aniruddha M. Godbole Aniruddha M. Godbole
Author Profile Icon Aniruddha M. Godbole
Aniruddha M. Godbole
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface
1. Introduction to Natural Language Processing 2. Feature Extraction Methods FREE CHAPTER 3. Developing a Text Classifier 4. Collecting Text Data with Web Scraping and APIs 5. Topic Modeling 6. Vector Representation 7. Text Generation and Summarization 8. Sentiment Analysis Appendix

Cleaning Text Data

The text data that we are going to discuss here is unstructured text data, which consists of written sentences. Most of the time, this text data cannot be used as it is for analysis because it contains some noisy elements, that is, elements that do not really contribute much to the meaning of the sentence at all. These noisy elements need to be removed because they do not contribute to the meaning and semantics of the text. If they're not removed, they can not only waste system memory and processing time, but also negatively impact the accuracy of the results. Data cleaning is the art of extracting meaningful portions from data by eliminating unnecessary details. Consider the sentence, "He tweeted, 'Live coverage of General Elections available at this.tv/show/ge2019. _/\_ Please tune in :) '. "

In this example, to perform NLP tasks on the sentence, we will need to remove the emojis, punctuation, and stop words, and then change the words...

You have been reading a chapter from
The Natural Language Processing Workshop
Published in: Aug 2020
Publisher: Packt
ISBN-13: 9781800208421
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image