Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Data Wrangling Workshop

You're reading from   The Data Wrangling Workshop Create your own actionable insights using data from multiple raw sources

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781839215001
Length 576 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Dr. Tirthajyoti Sarkar Dr. Tirthajyoti Sarkar
Author Profile Icon Dr. Tirthajyoti Sarkar
Dr. Tirthajyoti Sarkar
Shubhadeep Roychowdhury Shubhadeep Roychowdhury
Author Profile Icon Shubhadeep Roychowdhury
Shubhadeep Roychowdhury
Brian Lipp Brian Lipp
Author Profile Icon Brian Lipp
Brian Lipp
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface
1. Introduction to Data Wrangling with Python 2. Advanced Operations on Built-In Data Structures FREE CHAPTER 3. Introduction to NumPy, Pandas, and Matplotlib 4. A Deep Dive into Data Wrangling with Python 5. Getting Comfortable with Different Kinds of Data Sources 6. Learning the Hidden Secrets of Data Wrangling 7. Advanced Web Scraping and Data Gathering 8. RDBMS and SQL 9. Applications in Business Use Cases and Conclusion of the Course Appendix

Joins

Now, we will learn how to exploit the relationship we just built. This means that if we have the primary key from one table, we can recover all the data needed from that table and also all the linked rows from the child table. To achieve this, we will use something called a join.

A join is basically a way to retrieve linked rows from two tables using any kind of primary key – foreign key relation that they have. There are many types of join, including INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER, and CROSS. They are used in different situations. However, most of the time, in simple 1: N relations, we end up using an INNER join. In Chapter 1, Introduction to Data Wrangling with Python, we learned about sets. We can view an INNER join as an intersection of two sets. The following diagram illustrate the concepts:

Figure 8.7: A diagram representing the intersection join

Here, A represents one table, and B represents another. The meaning of having...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image