Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 1.x Deep Learning Cookbook

You're reading from   TensorFlow 1.x Deep Learning Cookbook Over 90 unique recipes to solve artificial-intelligence driven problems with Python

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781788293594
Length 536 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. TensorFlow - An Introduction FREE CHAPTER 2. Regression 3. Neural Networks - Perceptron 4. Convolutional Neural Networks 5. Advanced Convolutional Neural Networks 6. Recurrent Neural Networks 7. Unsupervised Learning 8. Autoencoders 9. Reinforcement Learning 10. Mobile Computation 11. Generative Models and CapsNet 12. Distributed TensorFlow and Cloud Deep Learning 13. Learning to Learn with AutoML (Meta-Learning) 14. TensorFlow Processing Units

Introduction

In the previous chapter, we saw how to apply ConvNets to images. During this chapter, we will apply similar ideas to texts.

What do a text and an image have in common? At first glance, very little. However, if we represent sentences or documents as a matrix then this matrix is not different from an image matrix where each cell is a pixel. So, the next question is, how can we represent a text as a matrix? Well, it is pretty simple: each row of a matrix is a vector which represents a basic unit of the text. Of course, now we need to define what a basic unit is. A simple choice could be to say that the basic unit is a character. Another choice would be to say that a basic unit is a word, yet another choice is to aggregate similar words together and then denote each aggregation (sometimes called cluster or embedding) with a representative symbol.

Note that regardless...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image