Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Scala for Machine Learning, Second Edition

You're reading from   Scala for Machine Learning, Second Edition Build systems for data processing, machine learning, and deep learning

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787122383
Length 740 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Getting Started 2. Data Pipelines FREE CHAPTER 3. Data Preprocessing 4. Unsupervised Learning 5. Dimension Reduction 6. Naïve Bayes Classifiers 7. Sequential Data Models 8. Monte Carlo Inference 9. Regression and Regularization 10. Multilayer Perceptron 11. Deep Learning 12. Kernel Models and SVM 13. Evolutionary Computing 14. Multiarmed Bandits 15. Reinforcement Learning 16. Parallelism in Scala and Akka 17. Apache Spark MLlib A. Basic Concepts B. References Index

Reinforcement learning

The need for an alternative to traditional learning techniques arose with the design of the first autonomous systems.

Understanding the challenge

Autonomous systems are semi-independent systems that perform tasks with a high degree of autonomy. Autonomous systems touch every facet of our life, from robots and self-driving cars to drones. Autonomous devices react to the environment in which they operate. The reaction or action requires a knowledge not only of the current state of the environment but also of the previous state(s).

Autonomous systems have specific characteristics that challenge traditional methodologies of machine learning, as listed here:

  • Autonomous systems have poorly defined domain knowledge because of the sheer number of possible combinations of states.
  • Traditional non-sequential supervised learning is not a practical option because of the following: training consumes significant computational resources, which are not always available on small autonomous...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime