In every machine learning project, an algorithm learns rules and instructions from a training dataset, with a view to performing a task better. In reinforcement learning (RL), the algorithm is called the agent, and it learns from the data provided by an environment. Here, the environment is a continuous source of information that returns data according to the agent's actions. And, because the data returned by an environment could be potentially infinite, there are many conceptual and practical differences among the supervised settings that arise while training. For the purpose of this chapter, however, it is important to highlight the fact that different environments not only provide different tasks to accomplish, but can also have different types of input, output, and reward signals, while also requiring the adaptation of the algorithm...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine