Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Recommender Systems with Machine Learning
Recommender Systems with Machine Learning

Recommender Systems with Machine Learning: Build Recommender Systems for Real-World Applications Using Machine Learning

Arrow left icon
Profile Icon AI Sciences
Arrow right icon
Free Trial
Video Mar 2023 6hrs 17mins 1st Edition
Video
NZ$14.99 NZ$160.99
Subscription
Free Trial
Arrow left icon
Profile Icon AI Sciences
Arrow right icon
Free Trial
Video Mar 2023 6hrs 17mins 1st Edition
Video
NZ$14.99 NZ$160.99
Subscription
Free Trial
Video
NZ$14.99 NZ$160.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Key benefits

  • Build recommender systems using ML from the perspective of content-based and collaborative filtering
  • Implementation of ML with data analysis on real-world datasets of movies and Spotify songs
  • Learn to program with Python and how to use ML concepts to develop recommender systems

Description

Have you ever thought how YouTube adjusts your feed as per your favorite content? Ever wondered! Why is your Netflix recommending your favorite TV shows? Have you ever wanted to build a customized recommender system for yourself? Then this is the course you are looking for. We will begin with the theoretical concepts and fundamental knowledge of recommender systems. You will gain an understanding of the essential taxonomies that form the foundation of these systems. You will be learning how to use the power of Python to evaluate your recommender systems datasets based on user ratings, user choices, music genres, categories of movies, and their year of release. A practical approach will be adopted to build content-based filtering and collaborative filtering techniques for recommender systems. Moving ahead, you will learn all the basic and necessary concepts for the applied recommender systems models along with the machine learning models. Moreover, various projects have been included in this course to develop a very useful experience for you. By the end of this course, you will be able to relate the concepts and theories for recommender systems in various domains, implement machine learning models for building real-world recommendation systems, and evaluate the machine learning models. All the resource files are added to the GitHub repository at: https://github.com/PacktPublishing/Recommender-Systems-with-Machine-Learning

Who is this book for?

No prior knowledge of recommender systems, machine learning, data analysis, or mathematics is needed. Only the working knowledge of basics of Python is required. You will start from the basics and gradually build your knowledge in the subject. This course is designed for both beginners with some programming experience and even those who know nothing about data analysis, ML, and RNNs. The course is suitable for individuals who want to advance their skills in ML, master the relation of data analysis with ML, build customized recommender systems for their applications, and implement ML algorithms for recommender systems.

What you will learn

  • Explore AI-integrated recommender systems basics
  • Look at the basic taxonomy of recommender systems
  • Study the impact of overfitting, underfitting, bias, and variance
  • Build content-based recommender systems with ML and Python
  • Build item-based recommender systems using ML techniques and Python
  • Learn to model KNN-based recommender engine for applications

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Mar 13, 2023
Length: 6hrs 17mins
Edition : 1st
Language : English
ISBN-13 : 9781837631667
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Mar 13, 2023
Length: 6hrs 17mins
Edition : 1st
Language : English
ISBN-13 : 9781837631667
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 169.97 315.97 146.00 saved
Recommender Systems with Machine Learning
NZ$14.99 NZ$160.99
Machine Learning with PyTorch and Scikit-Learn
NZ$80.99
50 Algorithms Every Programmer Should Know
NZ$73.99
Total NZ$ 169.97 315.97 146.00 saved Stars icon
Banner background image

Table of Contents

6 Chapters
Introduction Chevron down icon Chevron up icon
Motivation for Recommender System Chevron down icon Chevron up icon
Basic of Recommender Systems Chevron down icon Chevron up icon
Machine Learning for Recommender System Chevron down icon Chevron up icon
Project 1: Song Recommendation System Using Content-Based Filtering Chevron down icon Chevron up icon
Project 2: Movie Recommendation System Using Collaborative Filtering Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.