Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Statistics Cookbook

You're reading from   R Statistics Cookbook Over 100 recipes for performing complex statistical operations with R 3.5

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789802566
Length 448 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Francisco Juretig Francisco Juretig
Author Profile Icon Francisco Juretig
Francisco Juretig
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with R and Statistics FREE CHAPTER 2. Univariate and Multivariate Tests for Equality of Means 3. Linear Regression 4. Bayesian Regression 5. Nonparametric Methods 6. Robust Methods 7. Time Series Analysis 8. Mixed Effects Models 9. Predictive Models Using the Caret Package 10. Bayesian Networks and Hidden Markov Models 11. Other Books You May Enjoy

Choosing the best linear mixed model

When using OLS models, choosing the best one is not a complex task: we have a set of variables that we use, and we just pick whichever model has the lowest Akaike information criterion (AIC) (or any other appropriate metric that we choose).

Mixed models entail an extra level of complexity, as we can define the random effects in many ways. Resuming our previous example of deal_size versus time_spent and salespeople, we could choose a model with random effects only for the deal_size or both the deal_size and salespeople. We can also decide to add a random intercept or not, and we can force the model to assume that the shocks impacting each one of these are either, uncorrelated or correlated.

Choosing models by comparing the AIC is quite hard for mixed models, since we have a random and a fixed part. There are two types of analysis that we might...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image