Implementing logistic regression using TensorFlow
We herein use 90% of the first 300,000 samples for training, the remaining 10% for testing, and assume that X_train_enc
, Y_train
, X_test_enc
, and Y_test
 contain the correct data:
- First, we import TensorFlow, transform
X_train_enc
andX_test_enc
into anumpy
array, and castX_train_enc
,ÂY_train
,ÂX_test_enc
, andÂY_test
tofloat32
:>>> import tensorflow as tf >>> X_train_enc = X_train_enc.toarray().astype('float32') >>> X_test_enc = X_test_enc.toarray().astype('float32') >>> Y_train = Y_train.astype('float32') >>> Y_test = Y_test.astype('float32')
- We use the
tf.data
API to shuffle and batch data:>>> batch_size = 1000 >>> train_data = tf.data.Dataset.from_tensor_slices((X_train_enc, Y_train)) >>> train_data = train_data.repeat().shuffle(5000).batch...