LeNet for MNIST data
Note
You can follow along with the code in the Jupyter notebook ch-09a_CNN_MNIST_TF_and_Keras
.
Prepare the MNIST data into test and train sets:
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(os.path.join('.','mnist'), one_hot=True) X_train = mnist.train.images X_test = mnist.test.images Y_train = mnist.train.labels Y_test = mnist.test.labels
LeNet CNN for MNIST with TensorFlow
In TensorFlow, apply the following steps to build the LeNet based CNN models for MNIST data:
- Define the hyper-parameters, and the placeholders for x and y (input images and output labels):
n_classes = 10 # 0-9 digits n_width = 28 n_height = 28 n_depth = 1 n_inputs = n_height * n_width * n_depth # total pixels learning_rate = 0.001 n_epochs = 10 batch_size = 100 n_batches = int(mnist.train.num_examples/batch_size) # input images shape: (n_samples,n_pixels) x = tf.placeholder(dtype=tf.float32, name="x", shape=[None, n_inputs]) # output labels y = tf.placeholder...