Dataset
We are planning to use the MNIST dataset in the idx3
format as input to train our autoencoders. We will be testing the autoencoder on the first 100 images. Let's first plot the original images:
from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt mnist = input_data.read_data_sets('MNIST_data', one_hot = True) class OriginalImages: def __init__(self): pass def main(self): X_train, X_test = self.standard_scale(mnist.train.images, mnist.test.images) original_imgs = X_test[:100] plt.figure(1, figsize=(10, 10)) for i in range(0, 100): im = original_imgs[i].reshape((28, 28)) ax = plt.subplot(10, 10, i + 1) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(8) plt.imshow(im, cmap="gray", clim=(0.0, 1.0)) plt.suptitle(' Original Images', fontsize=15, y=0.95) plt.savefig('figures/original_images...