Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with Python Quick Start Guide

You're reading from   Natural Language Processing with Python Quick Start Guide Going from a Python developer to an effective Natural Language Processing Engineer

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789130386
Length 182 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Nirant Kasliwal Nirant Kasliwal
Author Profile Icon Nirant Kasliwal
Nirant Kasliwal
Arrow right icon
View More author details
Toc

Stemming and lemmatization

Stemming and lemmatization are very two very popular ideas that are used to reduce the vocabulary size of your corpus.

Stemming usually refers to a crude heuristic process that chops off the ends of words in the hope of achieving this goal correctly most of the time, and often includes the removal of derivational affixes.

Lemmatization usually refers to doing things properly with the use of a vocabulary and morphological analysis of words, normally aiming to remove inflectional endings only and to return the base or dictionary form of a word, which is known as the lemma.

If confronted with the token saw, stemming might return just s, whereas lemmatization would attempt to return either see or saw, depending on whether the use of the token was as a verb or a noun.
- Dr. Christopher Manning et al, 2008, [IR-Book]
(Chris Manning is a Professor in machine...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime