Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Microsoft SQL Server 2014 Business Intelligence Development Beginner's Guide

You're reading from   Microsoft SQL Server 2014 Business Intelligence Development Beginner's Guide Get to grips with Microsoft Business Intelligence and Data Warehousing technologies using this practical guide

Arrow left icon
Product type Paperback
Published in May 2014
Publisher
ISBN-13 9781849688888
Length 350 pages
Edition Edition
Arrow right icon
Authors (2):
Arrow left icon
Reza Rad Reza Rad
Author Profile Icon Reza Rad
Reza Rad
Abolfazl Radgoudarzi Abolfazl Radgoudarzi
Author Profile Icon Abolfazl Radgoudarzi
Abolfazl Radgoudarzi
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Microsoft SQL Server 2014 Business Intelligence Development Beginner's Guide
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Data Warehouse Design FREE CHAPTER 2. SQL Server Analysis Services Multidimensional Cube Development 3. Tabular Model Development of SQL Server Analysis Services 4. ETL with Integration Services 5. Master Data Management 6. Data Quality and Data Cleansing 7. Data Mining – Descriptive Models in SSAS 8. Identifying Data Patterns – Predictive Models in SSAS 9. Reporting Services 10. Dashboard Design 11. Power BI 12. Integrating Reports in Applications Index

Summary


One of the most important functions of data mining is prediction. In this chapter, you've learned how to find the best mining model for the defined problem and the existing dataset. Microsoft Accuracy Chart provided diagrams such as Classification Matrix, Lift Chart, and Cross Validation, which check the mining model against the test dataset. After finding the best mining model(s), you can use the prediction functionality using the DMX language. You've learned about the DMX query structure and cross-prediction joins with the Prediction Join clause. You've applied the mining model pattern on the case table using DMX queries, and you've learned how to use prediction functions such as PredictProbability to fetch the probability of a predictable variable.

In the last section of this chapter, you saw an example of the Time Series algorithm. You've also learned how to provide input data with time frames to the algorithm. And after configuring and training the algorithm, you ran a DMX query...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime