Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering SciPy

You're reading from   Mastering SciPy Implement state-of-the-art techniques to visualize solutions to challenging problems in scientific computing, with the use of the SciPy stack

Arrow left icon
Product type Paperback
Published in Nov 2015
Publisher
ISBN-13 9781783984749
Length 404 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Francisco Javier Blanco-Silva Francisco Javier Blanco-Silva
Author Profile Icon Francisco Javier Blanco-Silva
Francisco Javier Blanco-Silva
Francisco Javier B Silva Francisco Javier B Silva
Author Profile Icon Francisco Javier B Silva
Francisco Javier B Silva
Arrow right icon
View More author details
Toc

Image analysis

The aim of this section is the extraction of information from images. We are going to focus on two cases:

  • Image structure
  • Object recognition

Image structure

The goal is the representation of the contents of an image using simple structures. We focus on one case alone: image segmentation. We encourage the reader to explore other settings, such as quadtree decompositions.

Segmentation is a method to represent an image by partition into multiple objects (segments); each of them sharing some common property.

In the case of binary images, we can accomplish this by a process of labeling, as we have shown in a previous section. Let's revisit that technique with an artificial image composed by 30 random disks placed on a 64 x 64 canvas:

In [1]: import numpy as np, matplotlib.pyplot as plt
In [2]: from skimage.draw import circle
In [3]: image = np.zeros((64, 64)).astype('bool')
In [4]: for k in range(30):
   ...:     x0, y0 = np.random.randint(64, size=(2))
   ...:     image...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime