Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Mastering Python for Finance
Mastering Python for Finance

Mastering Python for Finance: Implement advanced state-of-the-art financial statistical applications using Python , Second Edition

Arrow left icon
Profile Icon James Ma Weiming
Arrow right icon
NZ$35.99 NZ$51.99
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.9 (8 Ratings)
eBook Apr 2019 426 pages 2nd Edition
eBook
NZ$35.99 NZ$51.99
Paperback
NZ$64.99
Subscription
Free Trial
Arrow left icon
Profile Icon James Ma Weiming
Arrow right icon
NZ$35.99 NZ$51.99
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.9 (8 Ratings)
eBook Apr 2019 426 pages 2nd Edition
eBook
NZ$35.99 NZ$51.99
Paperback
NZ$64.99
Subscription
Free Trial
eBook
NZ$35.99 NZ$51.99
Paperback
NZ$64.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Table of content icon View table of contents Preview book icon Preview Book

Mastering Python for Finance

Overview of Financial Analysis with Python

Since the publication of my previous book Mastering Python for Finance, there have been significant upgrades to Python itself and many third-party libraries. Many tools and features have been deprecated in favor of new ones. This chapter walks you through how to get the latest tools available and how to prepare the environment that will be used throughout the rest of the book.

We will be using Quandl for the majority of datasets covered in this book. Quandl is a platform that serves financial, economic, and alternative data. These sources of data are contributed by various data publishers, including the United Nations, World Bank, central banks, trading exchanges, investment research firms, and even members of the Quandl community. With the Python Quandl module, you can easily download datasets and perform financial analytics to derive...

Getting Python

At the time of writing, the latest Python version is 3.7.0. You may download the latest version for Windows, macOS X, Linux/UNIX, and other operating systems from the official Python website at https://www.python.org/downloads/. Follow the installation instructions to install the base Python interpreter on your operating system.

The installation process should add Python to your environment path. To check the version of your installed Python, type the following command into the terminal if you are using macOS X/Linux, or the command prompt on Windows:

$ python --version
Python 3.7.0
For easy installation of Python libraries, consider using an all-in-one Python distribution such as Anaconda (https://www.anaconda.com/download/), Miniconda (https://conda.io/miniconda.html), or Enthought Canopy (https://www.enthought.com/product/enthought-python-distribution/). Advanced...

Introduction to Quandl

Quandl is a platform that serves financial, economic, and alternative data. These sources of data are contributed by various data publishers, including the United Nations, World Bank, central banks, trading exchanges, and investment research firms.

With the Python Quandl module, you can easily get financial datasets into Python. Quandl offers free datasets, some of which are samples. Paid access is required for access to premium data products.

Setting up Quandl for your environment

The Quandl package requires the latest versions of NumPy and pandas. Additionally, we will require matplotlib for the rest of this chapter.

To install these packages, type the following code in your terminal window:

...

Plotting a time series chart

A simple and effective technique for analyzing time series data is by visualizing it on a graph, from which we can infer certain assumptions. This section will guide you through the process of downloading a dataset of stock prices from Quandl and plotting it on a price and volume graph. We will also cover plotting candlestick charts, which will give us more information than line charts.

Retrieving datasets from Quandl

Fetching data from Quandl into Python is fairly straightforward. Suppose we are interested in ABN Amro Group from the Euronext Stock Exchange. The ticker symbol in Quandl is EURONEXT/ABN. In a Jupyter notebook cell, run the following command:

In [ ]:
import quandl

# Replace...

Performing financial analytics on time series data

In this section, we will visualize some statistical properties of time series data used in financial analytics.

Plotting returns

One of the classic measures of security performance is its returns over a prior period. A simple method for calculating returns in pandas is pct_change, where the percentage change from the previous row is computed for every row in the DataFrame.

In the following example, we use ABN stock data to plot a simple graph of daily percentage returns:

In [ ]:
%matplotlib inline
import quandl

quandl.ApiConfig.api_key = QUANDL_API_KEY
df = quandl.get('EURONEXT/ABN.4')
daily_changes = df.pct_change(periods=1)
daily_changes...

Summary

In this chapter, we set up our working environment with Python 3.7 and used the virtual environment package to manage separate package installations. The pip command is a handy Python package manager that easily downloads and installs Python modules, including Jupyter, Quandl, and pandas. Jupyter is a browser-based interactive computational environment for executing Python code and visualizing data. With a Quandl account, we can easily obtain high-quality time series datasets. These sources of data are contributed by various data publishers. Datasets directly download into a pandas DataFrame object that allows us to perform financial analytics, such as plotting daily percentage returns, histograms, Q-Q plots, correlations, simple moving averages, and exponential moving averages.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore advanced financial models used by the industry and ways of solving them using Python
  • Build state-of-the-art infrastructure for modeling, visualization, trading, and more
  • Empower your financial applications by applying machine learning and deep learning

Description

The second edition of Mastering Python for Finance will guide you through carrying out complex financial calculations practiced in the industry of finance by using next-generation methodologies. You will master the Python ecosystem by leveraging publicly available tools to successfully perform research studies and modeling, and learn to manage risks with the help of advanced examples. You will start by setting up your Jupyter notebook to implement the tasks throughout the book. You will learn to make efficient and powerful data-driven financial decisions using popular libraries such as TensorFlow, Keras, Numpy, SciPy, and scikit-learn. You will also learn how to build financial applications by mastering concepts such as stocks, options, interest rates and their derivatives, and risk analytics using computational methods. With these foundations, you will learn to apply statistical analysis to time series data, and understand how time series data is useful for implementing an event-driven backtesting system and for working with high-frequency data in building an algorithmic trading platform. Finally, you will explore machine learning and deep learning techniques that are applied in finance. By the end of this book, you will be able to apply Python to different paradigms in the financial industry and perform efficient data analysis.

Who is this book for?

If you are a financial or data analyst or a software developer in the financial industry who is interested in using advanced Python techniques for quantitative methods in finance, this is the book you need! You will also find this book useful if you want to extend the functionalities of your existing financial applications by using smart machine learning techniques. Prior experience in Python is required.

What you will learn

  • Solve linear and nonlinear models representing various financial problems
  • Perform principal component analysis on the DOW index and its components
  • Analyze, predict, and forecast stationary and non-stationary time series processes
  • Create an event-driven backtesting tool and measure your strategies
  • Build a high-frequency algorithmic trading platform with Python
  • Replicate the CBOT VIX index with SPX options for studying VIX-based strategies
  • Perform regression-based and classification-based machine learning tasks for prediction
  • Use TensorFlow and Keras in deep learning neural network architecture

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 30, 2019
Length: 426 pages
Edition : 2nd
Language : English
ISBN-13 : 9781789345278
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning

Product Details

Publication date : Apr 30, 2019
Length: 426 pages
Edition : 2nd
Language : English
ISBN-13 : 9781789345278
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 201.97
Mastering Python for Finance
NZ$64.99
Learn Algorithmic Trading
NZ$71.99
Python for Finance Cookbook
NZ$64.99
Total NZ$ 201.97 Stars icon

Table of Contents

15 Chapters
Section 1: Getting Started with Python Chevron down icon Chevron up icon
Overview of Financial Analysis with Python Chevron down icon Chevron up icon
Section 2: Financial Concepts Chevron down icon Chevron up icon
The Importance of Linearity in Finance Chevron down icon Chevron up icon
Nonlinearity in Finance Chevron down icon Chevron up icon
Numerical Methods for Pricing Options Chevron down icon Chevron up icon
Modeling Interest Rates and Derivatives Chevron down icon Chevron up icon
Statistical Analysis of Time Series Data Chevron down icon Chevron up icon
Section 3: A Hands-On Approach Chevron down icon Chevron up icon
Interactive Financial Analytics with the VIX Chevron down icon Chevron up icon
Building an Algorithmic Trading Platform Chevron down icon Chevron up icon
Implementing a Backtesting System Chevron down icon Chevron up icon
Machine Learning for Finance Chevron down icon Chevron up icon
Deep Learning for Finance Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Most Recent
Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.9
(8 Ratings)
5 star 37.5%
4 star 12.5%
3 star 0%
2 star 0%
1 star 50%
Filter icon Filter
Most Recent

Filter reviews by




Aparatologia ANAD SA de CV Nov 13, 2023
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
As you need a subscription to a 2000+ USD do download data and technical indicators..... it is useless.
Amazon Verified review Amazon
Alicia M. Sep 05, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Llegó en buen estado y era lo que esperaba.
Amazon Verified review Amazon
Amazon Customer Mar 27, 2022
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Book was in perfect shape. Quick delivery.
Amazon Verified review Amazon
A. Thomas Sep 20, 2021
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
The book relies on data providers that no longer provide data used in the examples. The author deems in appropriate to direct the reader to paid data sources. I regret purchasing this book and would advice potential readers to borrow it from your library first before wasting any money on it - you will soon see how inadequate of a job the author 'teaches' python for finance.
Amazon Verified review Amazon
MM Aug 02, 2021
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
The author maybe has some knowledge of ML, but seems to not really understand financial time series.From using the entire dataset for min/max scaling to predicting price there isn’t much for some to actually learn anything useful.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.