Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R

You're reading from   Mastering Predictive Analytics with R Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783982806
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Gearing Up for Predictive Modeling FREE CHAPTER 2. Linear Regression 3. Logistic Regression 4. Neural Networks 5. Support Vector Machines 6. Tree-based Methods 7. Ensemble Methods 8. Probabilistic Graphical Models 9. Time Series Analysis 10. Topic Modeling 11. Recommendation Systems Index

Bagging


The focus of this chapter is on combining the results from different models in order to produce a single model that will outperform individual models on their own. Bagging is essentially an intuitive procedure for combining multiple models trained on the same data set, by using majority voting for classification models and average value for regression models. We'll present this procedure for the classification case, and later show how this is easily extended to handle regression models.

Bagging procedure for binary classification

Inputs:

  • data: The input data frame containing the input features and a column with the binary output label

  • M: An integer, representing the number of models that we want to train

Output:

  • models: A set of Μ trained binary classifier models

Method:

1. Create a random sample of size n, where n is the number of observations in the original data set, with replacement. This means that some of the observations from the original training set will be repeated and some...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image