Unlike the Naive Bayes classification model, the regression model provides a numerical output as a prediction. This output can be used for binary classification by predicting the value for both the events and using the maximum value. However, in examples such as predicting a house value based on regressors, we cannot use evaluation metrics that rely on just predicting whether we got the answer correct or incorrect. When we are predicting a numerical value, the evaluation metrics should also quantify the value of error in prediction. For example, if the house value is 600,000 and model A predicts it as 700,000 and model B predicts it as 1,000,000, metrics such as precision and recall will count both these predictions as false positives. However, for regression models, we need evaluation metrics that can tell us that model A was closer to the actual...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia