Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Kubernetes

You're reading from   Mastering Kubernetes Master the art of container management by using the power of Kubernetes

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher
ISBN-13 9781788999786
Length 468 pages
Edition 2nd Edition
Arrow right icon
Author (1):
Arrow left icon
Gigi Sayfan Gigi Sayfan
Author Profile Icon Gigi Sayfan
Gigi Sayfan
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Understanding Kubernetes Architecture FREE CHAPTER 2. Creating Kubernetes Clusters 3. Monitoring, Logging, and Troubleshooting 4. High Availability and Reliability 5. Configuring Kubernetes Security, Limits, and Accounts 6. Using Critical Kubernetes Resources 7. Handling Kubernetes Storage 8. Running Stateful Applications with Kubernetes 9. Rolling Updates, Scalability, and Quotas 10. Advanced Kubernetes Networking 11. Running Kubernetes on Multiple Clouds and Cluster Federation 12. Customizing Kubernetes – API and Plugins 13. Handling the Kubernetes Package Manager 14. The Future of Kubernetes 15. Other Books You May Enjoy

Diving into Kubernetes architecture in-depth

Kubernetes has very ambitious goals. It aims to manage and simplify the orchestration, deployment, and management of distributed systems across a wide range of environments and cloud providers. It provides many capabilities and services that should work across all that diversity, while evolving and remaining simple enough for mere mortals to use. This is a tall order. Kubernetes achieves this by following a crystal-clear, high-level design and using well-thought-out architecture that promotes extensibility and pluggability. Many parts of Kubernetes are still hard coded or environment aware, but the trend is to refactor them into plugins and keep the core generic and abstract. In this section, we will peel Kubernetes like an onion, starting with the various distributed systems design patterns and how Kubernetes supports them, then go over the mechanics of Kubernetes, including its set of APIs, and then take a look at the actual components that comprise Kubernetes. Finally, we will take a quick tour of the source-code tree to gain even better insight into the structure of Kubernetes itself.

At the end of this section, you will have a solid understanding of the Kubernetes architecture and implementation, and why certain design decisions were made.

Distributed systems design patterns

All happy (working) distributed systems are alike, to paraphrase Tolstoy in Anna Karenina. This means that, to function properly, all well-designed distributed systems must follow some best practices and principles. Kubernetes doesn't want to be just a management system. It wants to support and enable these best practices and provide high-level services to developers and administrators. Let's look at some of these design patterns.

Sidecar pattern

The sidecar pattern is about co-locating another container in a pod in addition to the main application container. The application container is unaware of the sidecar container and just goes about its business. A great example is a central logging agent. Your main container can just log to stdout, but the sidecar container will send all logs to a central logging service where they will be aggregated with the logs from the entire system. The benefits of using a sidecar container versus adding central logging to the main application container are enormous. First, applications are no longer burdened with central logging, which could be a nuisance. If you want to upgrade or change your central logging policy or switch to a totally new provider, you just need to update the sidecar container and deploy it. None of your application containers change, so you can't break them by accident.

Ambassador pattern

The ambassador pattern is about representing a remote service as if it were local and possibly enforcing a policy. A good example of the ambassador pattern is if you have a Redis cluster with one master for writes and many replicas for reads. A local ambassador container can serve as a proxy and expose Redis to the main application container on the localhost. The main application container simply connects to Redis on localhost:6379 (Redis's default port), but it connects to the ambassador running in the same pod, which filters the requests, sends write requests to the real Redis master, and read requests randomly to one of the read replicas. Just as we saw with the sidecar pattern, the main application has no idea what's going on. That can help a lot when testing against a real local Redis. Also, if the Redis cluster configuration changes, only the ambassador needs to be modified; the main application remains blissfully unaware.

Adapter pattern

The adapter pattern is about standardizing output from the main application container. Consider the case of a service that is being rolled out incrementally: It may generate reports in a format that doesn't conform to the previous version. Other services and applications that consume that output haven't been upgraded yet. An adapter container can be deployed in the same pod with the new application container and can alter its output to match the old version until all consumers have been upgraded. The adapter container shares the filesystem with the main application container, so it can watch the local filesystem, and whenever the new application writes something, it immediately adapts it.

Multinode patterns

The single-node patterns are all supported directly by Kubernetes through pods. Multinode patterns, such as leader election, work queues, and scatter-gather, are not supported directly, but composing pods with standard interfaces to accomplish them is a viable approach with Kubernetes.

You have been reading a chapter from
Mastering Kubernetes - Second Edition
Published in: Apr 2018
Publisher:
ISBN-13: 9781788999786
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image