Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Amazon SageMaker Cookbook

You're reading from   Machine Learning with Amazon SageMaker Cookbook 80 proven recipes for data scientists and developers to perform machine learning experiments and deployments

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800567030
Length 762 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joshua Arvin Lat Joshua Arvin Lat
Author Profile Icon Joshua Arvin Lat
Joshua Arvin Lat
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Getting Started with Machine Learning Using Amazon SageMaker 2. Chapter 2: Building and Using Your Own Algorithm Container Image FREE CHAPTER 3. Chapter 3: Using Machine Learning and Deep Learning Frameworks with Amazon SageMaker 4. Chapter 4: Preparing, Processing, and Analyzing the Data 5. Chapter 5: Effectively Managing Machine Learning Experiments 6. Chapter 6: Automated Machine Learning in Amazon SageMaker 7. Chapter 7: Working with SageMaker Feature Store, SageMaker Clarify, and SageMaker Model Monitor 8. Chapter 8: Solving NLP, Image Classification, and Time-Series Forecasting Problems with Built-in Algorithms 9. Chapter 9: Managing Machine Learning Workflows and Deployments 10. Other Books You May Enjoy

Preparing and testing the train script in Python

In this recipe, we will write a train script in Python that allows us to train a linear model with scikit-learn. Here, we can see that the train script inside a running custom container makes use of the hyperparameters, input data, and the configuration specified in the Estimator instance using the SageMaker Python SDK:

Figure 2.44 – How the train script is used to produce a model

Figure 2.44 – How the train script is used to produce a model

There are several options when running a training job – use a built-in algorithm, use a custom train script and custom Docker container images, or use a custom train script and prebuilt Docker images. In this recipe, we will focus on the second option, where we will prepare and test a bare minimum training script in Python that builds a linear model for a specific regression problem.

Once we have finished working on this recipe, we will have a better understanding of how SageMaker works behind the scenes. We will see where and how to load and use the configuration and arguments we have specified in the SageMaker Python SDK Estimator.

Getting ready

Make sure you have completed the Setting up the Python and R experimentation environments recipe.

How to do it…

The first set of steps in this recipe focus on preparing the train script. Let's get started:

  1. Inside the ml-python directory, double-click the train file to open the file inside the Editor pane:
    Figure 2.45 – Empty ml-python/train file

    Figure 2.45 – Empty ml-python/train file

    Here, we have an empty train file. In the lower right-hand corner of the Editor pane, you can change the syntax highlight settings to Python.

  2. Add the following lines of code to start the train script to import the required packages and libraries:
    #!/usr/bin/env python3
    import json
    import pprint
    import pandas as pd
    from sklearn.linear_model import LinearRegression
    from joblib import dump, load
    from os import listdir

    In the preceding block of code, we imported the following:

    • json for utility functions when working with JSON data
    • pprint to help us "pretty-print" nested structures such as dictionaries
    • pandas to help us read CSV files and work with DataFrames
    • LinearRegression from the sklearn library for training a linear model when we run the train script
    • joblib for saving and loading a model
    • listdir from the os module to help us list the files inside a directory
  3. Define the PATHS constant and the get_path() function. The get_path() function will be handy in helping us manage the paths and locations of the primary files and directories used in the script:
    PATHS = {
        'hyperparameters': 'input/config/hyperparameters.json',
        'input': 'input/config/inputdataconfig.json',
        'data': 'input/data/',
        'model': 'model/'
    }
        
    def get_path(key):
        return '/opt/ml/' + PATHS[key]

    If we want to get the path of the hyperparameters.json file, we can use get_path("hyperparameters") instead of using the absolute path in our code.

    Important note

    In this chapter, we will intentionally use get_path for the function name. If you have been using Python for a while, you will probably notice that this is definitely not Pythonic code! Our goal is for us to easily find the similarities and differences between the Python and R scripts, so we made the function names the same for the most part.

  4. Next, add the following lines just after the get_path() function definition from the previous step. These additional functions will help us later once we need to load and print the contents of the JSON files we'll be working with (for example, hyperparameters.json):
    def load_json(target_file):
        output = None
        
        with open(target_file) as json_data:
            output = json.load(json_data)
        
        return output
        
    def print_json(target_json):
        pprint.pprint(target_json, indent=4)
  5. Include the following functions as well in the train script (after the print_json() function definition):
    def inspect_hyperparameters():
        print('[inspect_hyperparameters]')
        hyperparameters_json_path = get_path(
            'hyperparameters'
        )
        print(hyperparameters_json_path)
        
        hyperparameters = load_json(
            hyperparameters_json_path
        )
        print_json(hyperparameters)
        
    def list_dir_contents(target_path):
        print('[list_dir_contents]')
        output = listdir(target_path)
        print(output)
        
        return output

    The inspect_hyperparameters() function allows us to inspect the contents of the hyperparameters.json file inside the /opt/ml/input/config directory. The list_dir_contents() function, on the other hand, allows us to display the contents of a target directory. We will use this later to check the contents of the training input directory.

  6. After that, define the inspect_input() function. This allows us to inspect the contents of inputdataconfig.json inside the /opt/ml/input/config directory:
    def inspect_input():
        print('[inspect_input]')
        input_config_json_path = get_path('input')
        print(input_config_json_path)
        input_config = load_json(input_config_json_path)
        print_json(input_config)
  7. Define the load_training_data() function. This function accepts a string value pointing to the input data directory and returns the contents of a CSV file inside that directory:
    def load_training_data(input_data_dir):
        print('[load_training_data]')    
        files = list_dir_contents(input_data_dir)
        training_data_path = input_data_dir + files[0]
        print(training_data_path)
        
        df = pd.read_csv(
            training_data_path, header=None
        )
        print(df)
        
        y_train = df[0].values
        X_train = df[1].values
        return (X_train, y_train)

    The flow inside the load_training_data() function can be divided into two parts – getting the specific path of the CSV file containing the training data, and then reading the contents of the CSV file using the pd.read_csv() function and returning the results inside a tuple of lists.

    Note

    Of course, the load_training_data() function we've implemented here assumes that there is only one CSV file inside that directory, so feel free to modify the following implementation when you are working with more than one CSV file inside the provided directory. At the same time, this function implementation only supports CSV files, so make sure to adjust the code block if you need to support multiple input file types.

  8. Define the get_input_data_dir() function:
    def get_input_data_dir():
        print('[get_input_data_dir]')
        key = 'train'
        input_data_dir = get_path('data') + key + '/'
        return input_data_dir
  9. Define the train_model() function:
    def train_model(X_train, y_train):
        print('[train_model]')
        model = LinearRegression()
        model.fit(X_train.reshape(-1, 1), y_train)
        return model
  10. Define the save_model() function:
    def save_model(model):
        print('[save_model]')
        filename = get_path('model') + 'model'
        print(filename)
        dump(model, filename)
        print('Model Saved!')
  11. Create the main() function, which executes the functions we created in the previous steps:
    def main():
        inspect_hyperparameters()
        inspect_input()
        input_data_dir = get_input_data_dir()
        X_train, y_train = load_training_data(
            input_data_dir
        )
        model = train_model(X_train, y_train)
        save_model(model)

    This function simply inspects the hyperparameters and input configuration, trains a linear model using the data loaded from the input data directory, and saves the model using the save_model() function.

  12. Finally, run the main() function:
    if __name__ == "__main__":
        main()

    The __name__ variable is set to "__main__" when the script is executed as the main program. This if condition simply tells the script to run if we're using it as the main program. If this script is being imported by another script, then the main() function will not run.

    Tip

    You can access a working copy of the train script file in the Machine Learning with Amazon SageMaker Cookbook GitHub repository: https://github.com/PacktPublishing/Machine-Learning-with-Amazon-SageMaker-Cookbook/blob/master/Chapter02/ml-python/train.

    Now that we are done with the train script, we will use the Terminal to perform the last set of steps in this recipe.

    The last set of steps focus on installing a few script prerequisites:

  13. Open a new Terminal:
    Figure 2.46 – New Terminal

    Figure 2.46 – New Terminal

    Here, we can see how to create a new Terminal tab. We simply click the plus (+) button and then choose New Terminal.

  14. In the Terminal at the bottom pane, run python3 --version:
    python3 --version

    Running this line of code should return a similar set of results to what is shown in the following screenshot:

    Figure 2.47 – Result of running python3 --version in the Terminal

    Figure 2.47 – Result of running python3 --version in the Terminal

    Here, we can see that our environment is using Python version 3.6.9.

  15. Install pandas using pip. The pandas library is used when working with DataFrames (tables):
    pip3 install pandas
  16. Install sklearn using pip. The scikit-learn library is a machine learning library that features several algorithms for classification, regression, and clustering problems:
    pip3 install sklearn
  17. Navigate to the ml-python directory:
    cd /home/ubuntu/environment/opt/ml-python
  18. To make the train script executable, run the following command in the Terminal:
    chmod +x train
  19. Test the train script in your AWS Cloud9 environment by running the following command in the Terminal:
    ./train

    Running the previous lines of code will yield results similar to the following:

Figure 2.48 – Result of running the train script

Figure 2.48 – Result of running the train script

Here, we can see the logs that were produced by the train script. After the train script has been successfully executed, we expect the model files to be stored inside the /opt/ml/model directory.

Now, let's see how this works!

How it works…

In this recipe, we prepared a custom train script using Python. The script starts by identifying the input paths and loading the important files to help set the context of the execution. This train script demonstrates how the input and output values are passed around between the SageMaker Python SDK (or API) and the custom container. It also shows how to load the training data, train a model, and save a model.

When the Estimator object is initialized and configured, some of the specified values, including the hyperparameters, are converted from a Python dictionary into JSON format in an API call when invoking the fit() function. The API call on the SageMaker platform then proceeds to create and mount the JSON file inside the environment where the train script is running. It works the same way as it does with the other files loaded by the train script file, such as the inputdataconfig.json file.

If you are wondering what is inside the inputdataconfig.json file, refer to the following code block for an example of what it looks like:

{"<channel name>": {"ContentType": "text/csv", 
       "RecordWrapperType": "None",
       "S3DistributionType": "FullyReplicated",
       "TrainingInputMode": "File"}} 

For each of the input channels, a corresponding set of properties is specified in this file. The following are some of the common properties and values that are used in this file. Of course, the values here depend on the type of data and the algorithm being used in the experiment:

  • ContentTypeValid Values: text/csv, image/jpeg, application/x-recordio-protobuf, and more.
  • RecordWrapperTypeValid Values: None or RecordIO. The RecordIO value is set only when the TrainingInputMode value is set to Pipe. The training algorithm requires the RecordIO format for the input data, and the input data is not in RecordIO format yet.
  • S3DistributionTypeValid Values: FullyReplicated or ShardedByS3Key. If the value is set to FullyReplicated, the entire dataset is copied on each ML instance that's launched during model training. On the other hand, when the value is set to ShardedByS3Key, each machine that's launched and used during model training makes use of a subset of the training data provided.
  • TrainingInputModeValid Values: File or Pipe. When the File input mode is used, the entire dataset is downloaded first before the training job starts. On the other hand, the Pipe input mode is used to speed up training jobs, start faster, and requires less disk space. This is very useful when dealing with large datasets. If you are planning to support the Pipe input mode in your custom container, the directories inside the /opt/ml/input/data directory are a bit different and will be in the format of <channel name>_<epoch number>. If we used this example in our experimentation environment, we would have directories named d_1, d_2, … instead inside the /opt/ml/input/data directory. Make sure that you handle scenarios dealing with data files that don't exist yet as you need to add some retry logic inside the train script.

In addition to files stored inside a few specific directories, take note that there are a couple of environment variables that can be loaded and used by the train script as well. These include TRAINING_JOB_NAME and TRAINING_JOB_ARN.

The values for these environment variables can be loaded by using the following lines of Python code:

import os
training_job_name = os.environ['TRAINING_JOB_NAME']

We can test our script by running the following code in the Terminal:

TRAINING_JOB_NAME=abcdef ./train

Feel free to check out the following reference on how SageMaker provides training information: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-running-container.html.

There's more…

If you are dealing with distributed training where datasets are automatically split across different instances to achieve data parallelism and model parallelism, another configuration file that can be loaded by the train script is the resourceconfig.json file. This file can be found inside the /opt/ml/input/config directory. This file contains details regarding all running containers when the training job is running and provides information about current_host, hosts, and network_interface_name.

Important note

Take note that the resourceconfig.json file only exists when distributed training is used, so check the existence of this file (as well as other files) before performing the load operation.

If you want to update your train script with the proper support for distributed training, simply use the experiment environment from the Setting up the Python and R experimentation environments recipe and create a dummy file named resourceconfig.json inside the /opt/ml/input/config directory:

{
    "current_host": "host-1",
    "hosts": ["host-1","host-2"],
    "network_interface_name":"eth1"
}

The preceding code will help you create that dummy file.

You have been reading a chapter from
Machine Learning with Amazon SageMaker Cookbook
Published in: Oct 2021
Publisher: Packt
ISBN-13: 9781800567030
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image