Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

You're reading from   Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization Create user-kernel interfaces, work with peripheral I/O, and handle hardware interrupts

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781801079518
Length 452 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: Character Device Driver Basics
2. Writing a Simple misc Character Device Driver FREE CHAPTER 3. User-Kernel Communication Pathways 4. Working with Hardware I/O Memory 5. Handling Hardware Interrupts 6. Working with Kernel Timers, Threads, and Workqueues 7. Section 2: Delving Deeper
8. Kernel Synchronization - Part 1 9. Kernel Synchronization - Part 2 10. Other Books You May Enjoy

Hacking the secret driver

Think about this: we have the copy_to_user() helper routine; the first parameter is the destination to address, which should be a user space virtual address (a UVA), of course. Regular usage will comply with this and provide a legal and valid user space virtual address as the destination address, and all will be well.

But what if we don't? What if we pass another user space address, or, check this out – a kernel virtual address (a KVA) – in its place? The copy_to_user() code will now, running with kernel privileges, overwrite the destination with whatever data is in the source address (the second parameter) for the number of bytes in the third parameter! Indeed, hackers often attempt techniques such as this, to insert code posing as data into a user space buffer and execute it with kernel privilege, leading to a quite deadly privilege escalation (privesc) scenario.

To clearly demonstrate the adverse effects of not carefully designing and implementing a driver, we deliberately introduce errors (bugs, really!) into both the read and write methods of a 'bad' version of our previous driver (although here, we only consider the scenario with respect to the very common copy_[from|to]_user() routines and nothing else).

To get a more hands-on feel for this, we will write a "bad" version of our ch1/miscdrv_rdwr driver. We'll call it (ever so cleverly) ch1/bad_miscdrv. In this version, we deliberately have two buggy code paths built into it:

  • One within the driver's read method
  • The other, the more exciting one, as you shall soon see, within the write method.

Let's check both out. We'll begin with the buggy read.

You have been reading a chapter from
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization
Published in: Mar 2021
Publisher: Packt
ISBN-13: 9781801079518
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image