Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn OpenCV 4 by Building Projects

You're reading from   Learn OpenCV 4 by Building Projects Build real-world computer vision and image processing applications with OpenCV and C++

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789341225
Length 310 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
David Millán Escrivá David Millán Escrivá
Author Profile Icon David Millán Escrivá
David Millán Escrivá
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Vinícius G. Mendonça Vinícius G. Mendonça
Author Profile Icon Vinícius G. Mendonça
Vinícius G. Mendonça
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Getting Started with OpenCV FREE CHAPTER 2. An Introduction to the Basics of OpenCV 3. Learning Graphical User Interfaces 4. Delving into Histogram and Filters 5. Automated Optical Inspection, Object Segmentation, and Detection 6. Learning Object Classification 7. Detecting Face Parts and Overlaying Masks 8. Video Surveillance, Background Modeling, and Morphological Operations 9. Learning Object Tracking 10. Developing Segmentation Algorithms for Text Recognition 11. Text Recognition with Tesseract 12. Deep Learning with OpenCV 13. Other Books You May Enjoy

Computer vision and the machine learning workflow

Computer vision applications with machine learning have a common basic structure. This structure is divided into different steps:

  1. Pre-process
  2. Segmentation
  3. Feature extraction
  4. Classification result
  5. Post-process

These are common in almost all computer vision applications, while others are omitted. In the following diagram, you can see the different steps that are involved:

Almost all computer vision applications start with a Pre-process applied to the input image, which consists of the removal of light and noise, filtering, blurring, and so on. After applying all pre-processing required to the input image, the second step is Segmentation. In this step, we have to extract the regions of interest in the image and isolate each one as a unique object of interest. For example, in a face detection system, we have to separate the faces...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime