Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science 2. Data Acquisition FREE CHAPTER 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Deep autoencoders

An autoencoder is used for feature selection and extraction. It consists of two symmetrical DBNs. The first half of the network is composed of several layers, which performs encoding. The second part of the network performs decoding. Each layer of the autoencoder is an RBM. This is illustrated in the following figure:

Deep autoencoders

The purpose of the encoding sequence is to compress the original input into a smaller vector space. The middle layer of the previous figure is this compressed layer. These intermediate vectors can be thought of as possible features of the dataset. The encoding is also referred to as the pre-training half. It is the output of the intermediate RBM layer and does not perform classification.

The encoder's first layer will use more inputs than used by the dataset. This has the effect of expanding the features of the dataset. A sigmoid-belief unit is a form of non-linear transformation used with each layer. This unit is not able to accurately represent information...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image