Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science FREE CHAPTER 2. Data Acquisition 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Summary


Many times, half the battle in data science is manipulating data so that it is clean enough to work with. In this chapter, we examined many techniques for taking real-world, messy data and transforming it into workable datasets. This process is generally known as data cleaning, wrangling, reshaping, or munging. Our focus was on core Java techniques, but we also examined third-party libraries.

Before we can clean data, we need to have a solid understanding of the format of our data. We discussed CSV data, spreadsheets, PDF, and JSON file types, as well as provided several examples of manipulating text file data. As we examined text data, we looked at multiple approaches for processing the data, including tokenizers, Scanners, and BufferedReaders. We showed ways to perform simple cleaning operations, remove stop words, and perform find and replace functions.

This chapter also included a discussion on data imputation and the importance of identifying and rectifying missing data situations...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime