Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Healthcare Analytics Made Simple
Healthcare Analytics Made Simple

Healthcare Analytics Made Simple: Techniques in healthcare computing using machine learning and Python

Arrow left icon
Profile Icon Kumar Profile Icon Kumar Profile Icon Khader
Arrow right icon
Free Trial
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4 (8 Ratings)
Paperback Jul 2018 268 pages 1st Edition
eBook
NZ$35.99 NZ$51.99
Paperback
NZ$64.99
Subscription
Free Trial
Arrow left icon
Profile Icon Kumar Profile Icon Kumar Profile Icon Khader
Arrow right icon
Free Trial
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4 (8 Ratings)
Paperback Jul 2018 268 pages 1st Edition
eBook
NZ$35.99 NZ$51.99
Paperback
NZ$64.99
Subscription
Free Trial
eBook
NZ$35.99 NZ$51.99
Paperback
NZ$64.99
Subscription
Free Trial

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Healthcare Analytics Made Simple

Healthcare Foundations

This chapter is mainly aimed at developers who have limited experience of healthcare. By the end of it, you will be able to describe basic characteristics of healthcare delivery in the United States, you will be familiar with specific legislation in the US that is relevant to analytics, you will understand how data in healthcare is structured, organized, and coded, and you will be aware of frameworks for thinking about analytics in healthcare.

Healthcare delivery in the US

The healthcare industry impacts all of us, through its interactions with ourselves, our loved ones, our family, and our friends. The high costs associated with the healthcare industry are intertwined with the physical, emotional, and spiritual trauma that occurs when someone close to us becomes ill or feels pain.

In the United States, the healthcare system is in a fragile state, as healthcare expenditure exceeds 15% of the nation's total GDP; this proportion far exceeds that of other developed countries, and is expected to rise to at least 20% by the year 2040 (Braunstein, 2014; Bernaert, 2015). The rise in healthcare costs in the US, and internationally, can be attributed to several factors. One is a shift in demographics to a more elderly population. Average life expectancy (LE) rose to in excess of 80 years of age for the first time in 2011...

Patient data – the journey from patient to computer

The clinical data collection process starts when a patient starts telling a physician about his or her condition. This is known as the patient history, and since it is not observed directly by the physician, but instead recounted by the patient, the patient’s story is known as subjective information. In contrast, objective information comes from the physician and consists of the physician's own observations about the patient, from the physical examination, lab tests, and imaging studies, to other diagnostic procedures. Together, the subjective and objective information makes up the clinical note.

There are several types of clinical notes used in healthcare. The history and physical (H&P) is the most thorough and comprehensive clinical note. It is usually obtained when an outpatient physician sees a patient...

Standardized clinical codesets

Being philosophical for a moment, every known object that has a significant importance attributed to it has a name. The organs you are using to read these words are known as eyes. The words are written on pieces of paper called pages. To turn the pages, you use your hands. These are all objects that we have named so that we can identify them easily.

In healthcare, important entities—diseases, procedures, lab tests, drugs, symptoms, bacteria species, for example, have names and identities too. For example, the failure of the heart valves to pump blood to the rest of the body is known as heart failure. ACE inhibitors are a class of drugs used to treat heart failure.

A problem arises, however, when healthcare industry workers associate the same entity with different identities. For example, one physician may refer to "heart failure&quot...

Breaking down healthcare analytics

So you've decided to enter the world of analytics, and you know you want to focus on the healthcare industry. However, that barely narrows down the problem space, as there are hundreds of open problems in healthcare that are being addressed with machine learning and other analytical tools. If you have ever typed the words "machine learning in healthcare" into Google or PubMed, you have probably discovered how vast the ocean of machine learning use cases in healthcare is. In academia, publications focus on problems ranging from predicting dementia onset in the elderly to predicting the occurrence of a heart attack within six months to predicting which antidepressants patients will best respond to. How do you pick the problem on which to focus? This section is all about answering that question. Choosing the appropriate problem to...

Summary

In Chapter 1, Introduction to Healthcare Analytics, we introduced the Healthcare Analytics triumvirate of healthcare, mathematics, and computer science. In this chapter, we have looked at some foundational healthcare topics. In Chapter 3, Machine Learning Foundations, we will look at some of the mathematical and machine learning concepts that underlie healthcare analytics.

References and further reading

Bernaert, Arnaud (2015). "Five Global Health Trends You Can't Ignore." UPS Longitudes. April 13, 2015. longitudes.ups.com/five-global-health-trends-you-cant-ignore/.

Braunstein, Mark (2014). Contemporary Health Informatics. Chicago, IL: AHIMA Press.

Esfandiari N, Babavalian MR, Moghadam A-ME, Tabar VK (2014) Knowledge discovery in medicine: current issue and future trend. Expert Syst Appl 41(9): 4434–4463.

Martin, GJ (2005). "Screening and Prevention of Disease." In Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL. eds. Harrison's Principles of Internal Medicine, 16e. New York, NY: McGraw-Hill.

OECD (2013), Health at a Glance 2013: OECD Indicators, OECD Publishing. http://dx.doi.org/10.1787/health_glance-2013-en.

Smith, Robert C (1996). The Patient's Story. Boston, MA: Little, Brown.

US Department...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Perform healthcare analytics with Python and SQL
  • Build predictive models on real healthcare data with pandas and scikit-learn
  • Use analytics to improve healthcare performance

Description

In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples.

Who is this book for?

Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.

What you will learn

  • Gain valuable insight into healthcare incentives, finances, and legislation
  • Discover the connection between machine learning and healthcare processes
  • Use SQL and Python to analyze data
  • Measure healthcare quality and provider performance
  • Identify features and attributes to build successful healthcare models
  • Build predictive models using real-world healthcare data
  • Become an expert in predictive modeling with structured clinical data
  • See what lies ahead for healthcare analytics

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 31, 2018
Length: 268 pages
Edition : 1st
Language : English
ISBN-13 : 9781787286702
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 31, 2018
Length: 268 pages
Edition : 1st
Language : English
ISBN-13 : 9781787286702
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just NZ$7 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total NZ$ 167.97
Machine Learning for Healthcare Analytics Projects
NZ$37.99
Deep Learning By Example
NZ$64.99
Healthcare Analytics Made Simple
NZ$64.99
Total NZ$ 167.97 Stars icon

Table of Contents

10 Chapters
Introduction to Healthcare Analytics Chevron down icon Chevron up icon
Healthcare Foundations Chevron down icon Chevron up icon
Machine Learning Foundations Chevron down icon Chevron up icon
Computing Foundations – Databases Chevron down icon Chevron up icon
Computing Foundations – Introduction to Python Chevron down icon Chevron up icon
Measuring Healthcare Quality Chevron down icon Chevron up icon
Making Predictive Models in Healthcare Chevron down icon Chevron up icon
Healthcare Predictive Models – A Review Chevron down icon Chevron up icon
The Future – Healthcare and Emerging Technologies Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4
(8 Ratings)
5 star 75%
4 star 0%
3 star 12.5%
2 star 12.5%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




J. Weeks May 19, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great overview of several broad topics. The book was exceptionally well written in an easy to read and referencable manner. I would highly recommend the book to anyone new to the healthcare industry or interested in learning advanced analytics with Python.
Amazon Verified review Amazon
Dr. Burt Lesnick Aug 21, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The reader is taken on two parallel journeys through the intricacy of the US Healthcare environment and the practical tools for Analytics. Using simple data sets that can be downloaded from public sources, the text guides you through the application of the Python language (including base language and external libraries, such as pandas and scikit-learn), the SQL language, and machine learning algorithms.This book could be used by people with some confidence in their programming skills to learn independently. It could also be a textbook to guide those in a more structured tutorial program.Overall the text is well written, easy to follow and insightful about the benefits and pitfalls about applying modern analytics to the healthcare environment.Burt Lesnick, MDPast Medical Director, The Children's Care Network (A pediatric accountable care organization in Atlanta, GA)Regent at Large, American College of Chest Physicians
Amazon Verified review Amazon
Aalap Shah, MD Jan 17, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
As an anesthesiologist, I have found that our specialty has shifted from traditional experience and bench/lab research to data-drive approaches in optimizing our patients' outcomes. As more patients enter the US hospital systems, more and more data points are being combined to help establish trends and extrapolate future results.While I personally have limited experience with data mining at different institutions (e.g. SQL), this primer helps even the least computer-savvy person read between the lines of the data-heavy EHR. One can understand how data points can start to be manipulated for research or quality/process improvement purposes. The primer does a great job of address important and trendy topics in healthcare quality improvement by empowering the reader with the tools to create predictive models for outcomes, code and analyze diagnoses and sub-groups, and plot data in a way that C-Suite and physicians alike can appreciate and understand.Overall, a very thorough primer that flows well between the tenets of knowledge germane to medical specialties and helps to create a dialog between non-programming physicians and analysts seeking to improve the healthcare system.
Amazon Verified review Amazon
Lakshmi Jonnakoti Sep 01, 2018
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Dr. Vikram Kumar justified the title by making Data Science and computer fundamentals simple for healthcare professionals and healthcare simple for computer professionals. This is a must-have book for healthcare professionals to elevate current responsibilities and a good start for a career change aspirants from a non-healthcare background. We can easily resonate our experiences with examples narrated by Dr. Vikram Kumar. Highly recommend this book.
Amazon Verified review Amazon
DI Jul 07, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Excellent book to learn and to apply ML in healthcare.It s very well writen, so everybody can understand. I used this book as guideline for my project.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.