-
Given a current sequence, predict the score for the next note, then do a prediction for each step you want to generate.
- (1) RNNs operate on sequences of vectors, for the input and output, which is good for sequential data such as a music score, and (2) keep an internal state composed of the previous output steps, which is good for doing a prediction based on past inputs, not only the current input.
- (1) First, the hidden layer will get h(t + 1), which is the output of the previous hidden layer, and (2) it will also receive x(t + 2), which is the input of the current step.
- The number of bars generated will be 2 bars, or 32 steps, since we have 16 steps per bar. At 80 QPM, each step takes 0.1875 seconds, because you take the number of seconds in a minute, divide by the QPM, and divide by the number of steps per quarter: 60...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand