Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Gradient Boosting with XGBoost and scikit-learn

You're reading from   Hands-On Gradient Boosting with XGBoost and scikit-learn Perform accessible machine learning and extreme gradient boosting with Python

Arrow left icon
Product type Paperback
Published in Oct 2020
Publisher Packt
ISBN-13 9781839218354
Length 310 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Corey Wade Corey Wade
Author Profile Icon Corey Wade
Corey Wade
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Bagging and Boosting
2. Chapter 1: Machine Learning Landscape FREE CHAPTER 3. Chapter 2: Decision Trees in Depth 4. Chapter 3: Bagging with Random Forests 5. Chapter 4: From Gradient Boosting to XGBoost 6. Section 2: XGBoost
7. Chapter 5: XGBoost Unveiled 8. Chapter 6: XGBoost Hyperparameters 9. Chapter 7: Discovering Exoplanets with XGBoost 10. Section 3: Advanced XGBoost
11. Chapter 8: XGBoost Alternative Base Learners 12. Chapter 9: XGBoost Kaggle Masters 13. Chapter 10: XGBoost Model Deployment 14. Other Books You May Enjoy

Approaching big data – gradient boosting versus XGBoost

In the real world, datasets can be enormous, with trillions of data points. Limiting work to one computer can be disadvantageous due to the limited resources of one machine. When working with big data, the cloud is often used to take advantage of parallel computers.

Datasets are big when they push the limits of computation. So far in this book, by limiting datasets to tens of thousands of rows with a hundred or fewer columns, there should have been no significant time delays, unless you ran into errors (happens to everyone).

In this section, we examine exoplanets over time. The dataset has 5,087 rows and 3,189 columns that record light flux at different times of a star's life cycle. Multiplying columns and rows together results in 1.5 million data points. Using a baseline of 100 trees, we need 150 million data points to build a model.

In this section, my 2013 MacBook Air had wait times of about 5 minutes....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime