For this chapter and the last, we took a deep dive into the core elements of deep learning and neural networks. While our review in the last couple chapters was not extensive, it should give you a good base for continuing through the rest of the book. If you had troubles with any of the material in the first two chapters, turn back now and spend more time reviewing the previous material. It is important that you understand the basics of neural network architecture and the use of various specialized layers, as we covered in this chapter (CNN and RNN). Be sure you understand the basics of CNN and how to use it effectively in picking features and what the trade—offs are when using pooling or sub sampling. Also understand the concept of RNN and how and when to use LSTM blocks for predicting or detecting temporal events. Convolutional layers and LSTM blocks are now fundamental...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine