Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Deep Learning Algorithms with Python

You're reading from   Hands-On Deep Learning Algorithms with Python Master deep learning algorithms with extensive math by implementing them using TensorFlow

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781789344158
Length 512 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Getting Started with Deep Learning FREE CHAPTER
2. Introduction to Deep Learning 3. Getting to Know TensorFlow 4. Section 2: Fundamental Deep Learning Algorithms
5. Gradient Descent and Its Variants 6. Generating Song Lyrics Using RNN 7. Improvements to the RNN 8. Demystifying Convolutional Networks 9. Learning Text Representations 10. Section 3: Advanced Deep Learning Algorithms
11. Generating Images Using GANs 12. Learning More about GANs 13. Reconstructing Inputs Using Autoencoders 14. Exploring Few-Shot Learning Algorithms 15. Assessments 16. Other Books You May Enjoy

Learning to use contractive autoencoders

Like sparse autoencoders, contractive autoencoders add a new regularization term to the loss function of the autoencoders. They try to make our encodings less sensitive to the small variations in the training data. So, with contractive autoencoders, our encodings become more robust to small perturbations such as noise present in our training dataset. We now introduce a new term called the regularizer or penalty term to our loss function. It helps to penalize the representations that are too sensitive to the input.

Our loss function can be mathematically represented as follows:

The first term represents the reconstruction error and the second term represents the penalty term or the regularizer and it is basically the Frobenius norm of the Jacobian matrix. Wait! What does that mean?

The Frobenius norm, also called the Hilbert-Schmidt norm...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image