Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Decision Makers

You're reading from   Data Science for Decision Makers Enhance your leadership skills with data science and AI expertise

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781837637294
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jon Howells Jon Howells
Author Profile Icon Jon Howells
Jon Howells
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Understanding Data Science and Its Foundations
2. Chapter 1: Introducing Data Science FREE CHAPTER 3. Chapter 2: Characterizing and Collecting Data 4. Chapter 3: Exploratory Data Analysis 5. Chapter 4: The Significance of Significance 6. Chapter 5: Understanding Regression 7. Part 2: Machine Learning – Concepts, Applications, and Pitfalls
8. Chapter 6: Introducing Machine Learning 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Unsupervised Machine Learning 11. Chapter 9: Interpreting and Evaluating Machine Learning Models 12. Chapter 10: Common Pitfalls in Machine Learning 13. Part 3: Leading Successful Data Science Projects and Teams
14. Chapter 11: The Structure of a Data Science Project 15. Chapter 12: The Data Science Team 16. Chapter 13: Managing the Data Science Team 17. Chapter 14: Continuing Your Journey as a Data Science Leader 18. Index 19. Other Books You May Enjoy

Methods for explaining machine learning models

Incorporating methods for interpreting and explaining machine learning models into your analytical toolkit can enhance transparency and provide insight into the decision-making process used by a machine learning model.

In some industries, explainability is an important aspect to consider; for example, in sensitive sectors, such as medicine and law, opaque “black-box” models are insufficient in scenarios where the reasoning behind how a machine learning model made a prediction is needed.

Let’s first look at a simple example, using coefficients to understand regression models.

Making sense of regression models – the power of coefficients

Imagine you’re using a regression model to predict future sales based on various factors such as marketing spend, seasonality, and product price. In this context, interpreting coefficients becomes akin to decoding the direct influence each factor has on your...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image