Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Science Algorithms in a Week

You're reading from   Data Science Algorithms in a Week Top 7 algorithms for scientific computing, data analysis, and machine learning

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781789806076
Length 214 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
David Toth David Toth
Author Profile Icon David Toth
David Toth
David Natingga David Natingga
Author Profile Icon David Natingga
David Natingga
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Classification Using K-Nearest Neighbors FREE CHAPTER 2. Naive Bayes 3. Decision Trees 4. Random Forests 5. Clustering into K Clusters 6. Regression 7. Time Series Analysis 8. Python Reference 9. Statistics 10. Glossary of Algorithms and Methods in Data Science
11. Other Books You May Enjoy

Classification Using K-Nearest Neighbors

A nearest neighbor algorithm classifies a data instance based on its neighbors. The class of a data instance determined by the k-nearest neighbors algorithm is the class with the highest representation among the k-closest neighbors.

In this chapter, we will cover the following topics:

  • How to implement the basics of the k-NN algorithm using the example of Mary and her temperature preferences
  • How to choose a correct k value so that the algorithm can perform correctly and with the highest degree of accuracy using the example of a map of Italy
  • How to rescale values and prepare them for the k-NN algorithm using the example of house preferences
  • How to choose a good metric to measure distances between data points
  • How to eliminate irrelevant dimensions in higher-dimensional space to ensure that the algorithm performs accurately using the text classification example
You have been reading a chapter from
Data Science Algorithms in a Week - Second Edition
Published in: Oct 2018
Publisher: Packt
ISBN-13: 9781789806076
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image