Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Governance Handbook

You're reading from   Data Governance Handbook A practical approach to building trust in data

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803240725
Length 394 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Wendy S. Batchelder Wendy S. Batchelder
Author Profile Icon Wendy S. Batchelder
Wendy S. Batchelder
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1:Designing the Path to Trusted Data
2. Chapter 1: What Is Data Governance? FREE CHAPTER 3. Chapter 2: How to Build a Coalition of Advocates 4. Chapter 3: Building a High-Performing Team 5. Chapter 4: Baseline Your Organization 6. Chapter 5: Defining Success and Aligning on Outcomes 7. Part 2:Data Governance Capabilities Deep Dive
8. Chapter 6: Metadata Management 9. Chapter 7: Technical Metadata and Data Lineage 10. Chapter 8: Data Quality 11. Chapter 9: Data Architecture 12. Chapter 10: Primary Data Management 13. Chapter 11: Data Operations 14. Part 3:Building Trust through Value-Based Delivery
15. Chapter 12: Launch Powerfully 16. Chapter 13: Delivering Quick Wins with Impact 17. Chapter 14: Data Automation for Impact and More Powerful Results 18. Chapter 15: Adoption That Drives Business Success 19. Chapter 16: Delivering Trusted Results with Outcomes That Matter 20. Part 4:Case Study
21. Chapter 17: Case Study – Financial Institution 22. Index 23. Other Books You May Enjoy

AI considerations

At the time of this writing, AI has become the topic of almost any conversation related to data. Most data practitioners, like myself, are excited about the potential that AI has to offer but also want to see governance applied to AI practices. Data professionals are in higher demand than ever due to the data governance needs to support AI. The top questions include the following:

  • How do I ensure that the underlying data set used to train AI is appropriate?
  • How are prompts protected? Are they retained?
  • How do we protect intellectual property (IP; for example, source code) if entered into an open source AI solution?
  • How is my data protected?
  • How are GenAI products being trained? What happens to the data?
  • How do we ensure that input and output are handled ethically and in accordance with our company values?

There is so much to be defined around AI, and the pace of change is only increasing. Many organizations are looking to their CDO...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image