Building Transactional Data Lakes
In the last few years, new technologies have emerged that have significantly enhanced the capabilities of traditional data lakes, enabling them to operate similarly to a data warehouse. These new technologies provide all the benefits of data lakes (such as low-cost object storage, and the ability to use serverless data processing services) while also making it much easier to update data in the data lake (amongst other benefits).
Traditional data lakes were built on the Apache Hive technology stack, which enables you to store data in various file formats (such as CSV, JSON, Parquet, and Avro). Hive enabled many tens of thousands of data lakes to be built on object storage, but over the years the limitations of Hive became more clear, as we will discuss in this chapter.
To overcome these limitations, a number of new table formats have been created by a number of different companies and open-source organizations. Keep reading to learn more...